If it's not what You are looking for type in the equation solver your own equation and let us solve it.
598.9/6+x+95x/x+6=95.8
We move all terms to the left:
598.9/6+x+95x/x+6-(95.8)=0
Domain of the equation: x!=0We add all the numbers together, and all the variables
x∈R
x+95x/x-89.8+598.9/6=0
We calculate fractions
x+570x/6x+(598.9x)/6x-89.8=0
We add all the numbers together, and all the variables
x+570x/6x+(+598.9x)/6x-89.8=0
We multiply all the terms by the denominator
x*6x+570x+(+598.9x)-(89.8)*6x=0
We add all the numbers together, and all the variables
570x+x*6x+(+598.9x)-(89.8)*6x=0
We multiply parentheses
570x+x*6x+(+598.9x)-538.8x=0
Wy multiply elements
6x^2+570x+(+598.9x)-538.8x=0
We get rid of parentheses
6x^2+570x+598.9x-538.8x=0
We add all the numbers together, and all the variables
6x^2+630.1x=0
a = 6; b = 630.1; c = 0;
Δ = b2-4ac
Δ = 630.12-4·6·0
Δ = 397026.01
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(630.1)-\sqrt{397026.01}}{2*6}=\frac{-630.1-\sqrt{397026.01}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(630.1)+\sqrt{397026.01}}{2*6}=\frac{-630.1+\sqrt{397026.01}}{12} $
| 8=34-8t | | -12=3/5v | | -3/7k=9/11 | | 3448.8/x=95.8 | | −2(x+1)+17=3(x+5)+x | | -2x+8=11 | | -(5t^2+4t-120)=0 | | 25+6x=-23 | | 99.8*6+95*x=95.8 | | x+3/8=2-x+2/3 | | 99.8*6+95*x/x+6=95.8 | | 2.69+-3.64x=23.78x | | (9x-1)(8x+1)=0 | | 9(n+1)=33 | | 800=x^2+34x | | 83=4x+3.X= | | (8x-5)(5x-3)=0 | | y-9.81=2.7 | | 6*99.8+x*95/x+6=95.8 | | 6n*5=41 | | 2t=5t-75 | | 0.8x-4.3=-1.1 | | 4s-4=5s-26 | | 8(4-6n)=(-208) | | 5^x=6^25 | | 6x^+7x-98=0 | | x+-2-1=1 | | 4m^2+12m=9 | | 4y+1=-7 | | 4/2=2/3k | | 3s=s+54 | | 7u=u+66 |