58=(5x+10)(30-2x)

Simple and best practice solution for 58=(5x+10)(30-2x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 58=(5x+10)(30-2x) equation:



58=(5x+10)(30-2x)
We move all terms to the left:
58-((5x+10)(30-2x))=0
We add all the numbers together, and all the variables
-((5x+10)(-2x+30))+58=0
We multiply parentheses ..
-((-10x^2+150x-20x+300))+58=0
We calculate terms in parentheses: -((-10x^2+150x-20x+300)), so:
(-10x^2+150x-20x+300)
We get rid of parentheses
-10x^2+150x-20x+300
We add all the numbers together, and all the variables
-10x^2+130x+300
Back to the equation:
-(-10x^2+130x+300)
We get rid of parentheses
10x^2-130x-300+58=0
We add all the numbers together, and all the variables
10x^2-130x-242=0
a = 10; b = -130; c = -242;
Δ = b2-4ac
Δ = -1302-4·10·(-242)
Δ = 26580
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{26580}=\sqrt{4*6645}=\sqrt{4}*\sqrt{6645}=2\sqrt{6645}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-130)-2\sqrt{6645}}{2*10}=\frac{130-2\sqrt{6645}}{20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-130)+2\sqrt{6645}}{2*10}=\frac{130+2\sqrt{6645}}{20} $

See similar equations:

| 3y-8y=2 | | 7x=5=3x+13 | | 36+6k=-8(k-8) | | 2u=6u-8 | | x2+5x+24=0 | | 8m-4=100 | | 280=-14r | | y2-4y=45 | | 9/10=x/110 | | 3x^2-1500-155x=0 | | -2x+5=5x+26 | | 19y-5=114 | | 5x+10x-20=130 | | 19y+5=114 | | 7+2x/3=2x-5 | | 7x²-18x+6=6+18x | | 10e-6=4e+9 | | 6d-3=2d+7 | | 19x-13=11x+27 | | 23y-5=42 | | 23y-5=41 | | 1x+4=-6x+18 | | 23y-5= | | 23y-5=45 | | Q=8x-x-48 | | (5x-10)/7=(65)/4 | | M÷3=2(m=0) | | 14x/5=6 | | -9x-24=2x-9 | | -9x+24=2x-3 | | 4b/3=12 | | 0,5b-3=2 |

Equations solver categories