If it's not what You are looking for type in the equation solver your own equation and let us solve it.
58=(15+2x)(12+2x)
We move all terms to the left:
58-((15+2x)(12+2x))=0
We add all the numbers together, and all the variables
-((2x+15)(2x+12))+58=0
We multiply parentheses ..
-((+4x^2+24x+30x+180))+58=0
We calculate terms in parentheses: -((+4x^2+24x+30x+180)), so:We get rid of parentheses
(+4x^2+24x+30x+180)
We get rid of parentheses
4x^2+24x+30x+180
We add all the numbers together, and all the variables
4x^2+54x+180
Back to the equation:
-(4x^2+54x+180)
-4x^2-54x-180+58=0
We add all the numbers together, and all the variables
-4x^2-54x-122=0
a = -4; b = -54; c = -122;
Δ = b2-4ac
Δ = -542-4·(-4)·(-122)
Δ = 964
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{964}=\sqrt{4*241}=\sqrt{4}*\sqrt{241}=2\sqrt{241}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-54)-2\sqrt{241}}{2*-4}=\frac{54-2\sqrt{241}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-54)+2\sqrt{241}}{2*-4}=\frac{54+2\sqrt{241}}{-8} $
| -x+2=1x+4 | | -2x-12=4x | | 4m-1=-17 | | -12r-48=-10r+20 | | -9=s+5 | | (m-1)(1-m)+m+109=0 | | 2/3(4x-7)=5 | | a*12=112 | | 2x+20=-40 | | y+3.58=5.76 | | -27-14x=-8(1-3x) | | 20x-15=10x+5 | | 38-2x=8(3x-5) | | -3x+10=11+8x | | 11+2x=3(x=2) | | 10-4x=3(1+8x) | | 5/8=(1/20)/x | | 10+7x=9+5x | | 6x–7=4x+1 | | 3x-50=34 | | 5/8=(1/20/x | | 50x-3=34 | | 20(p+18)=920 | | 12/x=12 | | 21(t+16)=378 | | 23-4x=2x-10 | | -3(5x=2 | | 32x+5=532x+5=5−2(x+7)-2x+7 | | 32x+5=532x+5=5−2(x+7)-2x+7 | | x^2-1/x-1=-2 | | x+(1÷2)=(4÷5)*x | | n/6-7=12 |