57840.25+(r-46)2=r2

Simple and best practice solution for 57840.25+(r-46)2=r2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 57840.25+(r-46)2=r2 equation:



57840.25+(r-46)2=r2
We move all terms to the left:
57840.25+(r-46)2-(r2)=0
We add all the numbers together, and all the variables
-1r^2+(r-46)2+57840.25=0
We multiply parentheses
-1r^2+2r-92+57840.25=0
We add all the numbers together, and all the variables
-1r^2+2r+57748.25=0
a = -1; b = 2; c = +57748.25;
Δ = b2-4ac
Δ = 22-4·(-1)·57748.25
Δ = 230997
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-\sqrt{230997}}{2*-1}=\frac{-2-\sqrt{230997}}{-2} $
$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+\sqrt{230997}}{2*-1}=\frac{-2+\sqrt{230997}}{-2} $

See similar equations:

| 2x+17+x+20=180 | | 7x-55=3x+20 | | 2n*0.5=90 | | 7(b+3)=-(b-4) | | 7x-55=3x=20 | | 4^2^(x+5)-11=245 | | 170-w=228 | | 7x+3-2×-1=16+6 | | 6x+12x+8x=80 | | -24=-6/5y | | 7.50+(6.25x)=45.00 | | 40/8=x/24 | | 8c^2+10c-3=0 | | 12+(9+g)7=26 | | Fn=2;+-1 | | -3(a-1)+2(a+3)=12 | | 55=4=3(m+2) | | 12x-4x=-64 | | 25-2(x-50)=19 | | 25-2(x-50=19 | | 8(x-3)+7=2x(4-178(x-3)+7=2x(4-178(x-3)+7=2x(4-178(x-3)+7=2x(4-17) | | 8(x-3)+7=2x(4-17)-3(6*3x) | | x+(4+2)=20 | | -p/3+1=-4 | | (2·3/4+1)+(-4·3/4+14)+(12y-3)-(8-8y)=0 | | a(2)+9a=0 | | 1/2x+3x=28 | | -3+x/5=0 | | X+x-×=15 | | (A)2+9a=0 | | 4(z-82=52 | | n2+n=338 |

Equations solver categories