If it's not what You are looking for type in the equation solver your own equation and let us solve it.
56x=(10x-2)(5x+3)
We move all terms to the left:
56x-((10x-2)(5x+3))=0
We multiply parentheses ..
-((+50x^2+30x-10x-6))+56x=0
We calculate terms in parentheses: -((+50x^2+30x-10x-6)), so:We add all the numbers together, and all the variables
(+50x^2+30x-10x-6)
We get rid of parentheses
50x^2+30x-10x-6
We add all the numbers together, and all the variables
50x^2+20x-6
Back to the equation:
-(50x^2+20x-6)
56x-(50x^2+20x-6)=0
We get rid of parentheses
-50x^2+56x-20x+6=0
We add all the numbers together, and all the variables
-50x^2+36x+6=0
a = -50; b = 36; c = +6;
Δ = b2-4ac
Δ = 362-4·(-50)·6
Δ = 2496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2496}=\sqrt{64*39}=\sqrt{64}*\sqrt{39}=8\sqrt{39}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-8\sqrt{39}}{2*-50}=\frac{-36-8\sqrt{39}}{-100} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+8\sqrt{39}}{2*-50}=\frac{-36+8\sqrt{39}}{-100} $
| 2x+27=6x-9 | | 4(2l+2)=96 | | 5x+3+1=3x+3+4+1 | | 4(6x-7)-3(x-5)=40 | | 6/n=50 | | 2(3x+9)=4x+72 | | 5x+8=-3x+24 | | 4(a-6)=96 | | 4z-2=3z+4 | | 27+6x=32 | | -7+5x+3=-9 | | 6÷n=50 | | 2-q=2q+17 | | 2+(0.2)x=-7 | | 4n-3=2n=9 | | 2+(1÷5)x=-7 | | 6÷n=14 | | 63=9a | | 17+2s=3 | | x+2x24=180 | | -100x(6+1=0 | | Y+5y+26=8 | | 4x+5x=2x-16 | | 5(x+2)=5(3+2) | | y=74+1 | | 694÷396÷x=1742 | | -8x-3=-6+11 | | (Q-5)x4=24 | | 8x-3=-6+11 | | 8x-15=3x+27 | | (37p)0.6=77.7 | | (w=3)=(w-7) |