56=(3x)2+(5x-4)2

Simple and best practice solution for 56=(3x)2+(5x-4)2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 56=(3x)2+(5x-4)2 equation:



56=(3x)2+(5x-4)2
We move all terms to the left:
56-((3x)2+(5x-4)2)=0
We calculate terms in parentheses: -(3x2+(5x-4)2), so:
3x2+(5x-4)2
We add all the numbers together, and all the variables
3x^2+(5x-4)2
We multiply parentheses
3x^2+10x-8
Back to the equation:
-(3x^2+10x-8)
We get rid of parentheses
-3x^2-10x+8+56=0
We add all the numbers together, and all the variables
-3x^2-10x+64=0
a = -3; b = -10; c = +64;
Δ = b2-4ac
Δ = -102-4·(-3)·64
Δ = 868
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{868}=\sqrt{4*217}=\sqrt{4}*\sqrt{217}=2\sqrt{217}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{217}}{2*-3}=\frac{10-2\sqrt{217}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{217}}{2*-3}=\frac{10+2\sqrt{217}}{-6} $

See similar equations:

| 6a-18=-5a+59 | | 3x-4+2x=16-20 | | −1=n−2 | | 4b-13=-5b+59 | | 3(2x+6)=-39+45 | | 25/3m-8/5=9/4 | | 5.5(2.8)x=30.8 | | 3x/5+8=1/3 | | 8-6x=6x-12 | | 20+10x=10x-10 | | 4x+3=2x+47 | | 12x+4=6x+2 | | 4x+1=7x+5 | | 1/212(x+256)=180 | | 5x=12=6x-8 | | 3x+5x+6x-5-15=122+2x-9x | | 7=-7x=3 | | 8c+24=72 | | 2(x+3)-2(2x-4)=20 | | (180-2x)+(180-3x)+2x+3x=360 | | 15x+10=58 | | x^2+4.6=7.8 | | 12m-4m+14=2m | | -2x-7(6x-19)=-87 | | X2+3x-15=0 | | -7(2x+9)=-21 | | -7(2x+90=-21 | | 124=-3x+5(2x+15) | | 3x2+42=60 | | 8c+3=72 | | -5p-5p=4p-5p+1 | | 9a+7=8a-6 |

Equations solver categories