If it's not what You are looking for type in the equation solver your own equation and let us solve it.
560=100d^2
We move all terms to the left:
560-(100d^2)=0
a = -100; b = 0; c = +560;
Δ = b2-4ac
Δ = 02-4·(-100)·560
Δ = 224000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{224000}=\sqrt{6400*35}=\sqrt{6400}*\sqrt{35}=80\sqrt{35}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-80\sqrt{35}}{2*-100}=\frac{0-80\sqrt{35}}{-200} =-\frac{80\sqrt{35}}{-200} =-\frac{2\sqrt{35}}{-5} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+80\sqrt{35}}{2*-100}=\frac{0+80\sqrt{35}}{-200} =\frac{80\sqrt{35}}{-200} =\frac{2\sqrt{35}}{-5} $
| 3x/5=72/12 | | 40x+7.5(1.5x)=700 | | 6y+12-10y+12=20 | | (X+2)^2/49+(y-1)^2/25=1 | | 6x-9=2x=7 | | w+|−2.8|=4.3w+|−2.8|=4.3 | | |5y+1|=12 | | 2x-15-x=11 | | F(x)=(x-5)3-64 | | 3y+4=1/5y-10 | | x^2-1.25x+.25=0 | | t=-16t^2+2500t+0 | | –3(6n–1)=–18n+3 | | 220-20q=20+10q | | X2-2x-25=-9x+5 | | X2+3x-30=10 | | 6x-10=15x-1 | | 40=40.00-0.10x | | X2-x-10=4x+4 | | 5x-16=138 | | 7/14=5/x | | X2-7x-3=5 | | 5y-2y=6+y | | 7(z−3)=42 | | 16y-24=20 | | 2.3^x-1+4.3^x-2=30 | | 10+1/2y=1 | | (8*x)+(4*1.5*x)=600 | | x^2+x-10^18=0 | | 4m+9+5m+-12=42 | | (8*x)+((4x1.5)*x)=600 | | 140(4)=100d2 |