55x*58x=791

Simple and best practice solution for 55x*58x=791 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 55x*58x=791 equation:



55x*58x=791
We move all terms to the left:
55x*58x-(791)=0
Wy multiply elements
3190x^2-791=0
a = 3190; b = 0; c = -791;
Δ = b2-4ac
Δ = 02-4·3190·(-791)
Δ = 10093160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{10093160}=\sqrt{4*2523290}=\sqrt{4}*\sqrt{2523290}=2\sqrt{2523290}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2523290}}{2*3190}=\frac{0-2\sqrt{2523290}}{6380} =-\frac{2\sqrt{2523290}}{6380} =-\frac{\sqrt{2523290}}{3190} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2523290}}{2*3190}=\frac{0+2\sqrt{2523290}}{6380} =\frac{2\sqrt{2523290}}{6380} =\frac{\sqrt{2523290}}{3190} $

See similar equations:

| 2x-7=3/2 | | 3y-7=5y+2 | | 6a+4=2a-9 | | 5z-2=3z+9 | | 4^x-1=65 | | 4^x+1=65 | | -21+4x=36 | | 8y-5=3y+10 | | 75/100*x=600 | | 1.6x^2+6.9x-176=0 | | 6x-1=-43-2x | | 3x-4=6-22 | | -5n^2+21n+4000=0 | | 1.88x6.3=11.844 | | -1=4u+3 | | 9-3x=-5x+6 | | 3y+13=20 | | F(-6)=1/2x-7 | | 2x*(6x+20)=180 | | 42=15^x | | Z+25=x+7 | | 2x+40=8x+10 | | 14-x=256 | | 2/5(x+4)=3x^2-2x | | (7x-21)+3x(4x-9)=180 | | 10(x+1)^2=90 | | x+4x=364 | | x+2x=374 | | 59x-413=1947 | | X+4x=306 | | 2x-4+2x=2(5x-4)+2 | | 21x+168=693 |

Equations solver categories