54x2+1710x+8820=0

Simple and best practice solution for 54x2+1710x+8820=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 54x2+1710x+8820=0 equation:



54x^2+1710x+8820=0
a = 54; b = 1710; c = +8820;
Δ = b2-4ac
Δ = 17102-4·54·8820
Δ = 1018980
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1018980}=\sqrt{324*3145}=\sqrt{324}*\sqrt{3145}=18\sqrt{3145}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1710)-18\sqrt{3145}}{2*54}=\frac{-1710-18\sqrt{3145}}{108} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1710)+18\sqrt{3145}}{2*54}=\frac{-1710+18\sqrt{3145}}{108} $

See similar equations:

| -16h+14=-11h-16 | | 2y/5=8/15 | | 3n-3n=4 | | 9z+3z-20=16+8z | | 3x-11=3+10 | | 0=-16t^2+ | | −8x2−15x+2=0 | | -2q-16=-q | | (9x+60)+(6x+150)=180 | | 7/10p-4=-2/5p-9 | | v=3v-60 | | 3x/5-1=11/7 | | -x+2(5x–1)=2(3x+4)+x | | 8−2(z−6)=3(−3z+7)+8 | | X+.08x=2.35 | | 10x-81+5x+18=180 | | -28+40v=-35 | | 6-2(c-2)=6(c+3) | | 4=2,5t​ | | -s+6=-6s-9 | | 2x4=32x+1 | | -5x+8x-6=3(x-2)-4 | | 1/4+4/5(3/4x-11/9)= | | 15.35+0.08(x+3)=16.10-0.11 | | -8-2u-8u=8-8u | | 45=14u-5u | | 24x=32x+1 | | 2x-27=21 | | 0.5x+2(3-1.2x)=-0.4x+10 | | -17.4r+2.15=-2.41-16.8r+15.84 | | 10-5m-8m=-8-7m | | 3x+5+x+41=180 |

Equations solver categories