If it's not what You are looking for type in the equation solver your own equation and let us solve it.
54g^2=6
We move all terms to the left:
54g^2-(6)=0
a = 54; b = 0; c = -6;
Δ = b2-4ac
Δ = 02-4·54·(-6)
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-36}{2*54}=\frac{-36}{108} =-1/3 $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+36}{2*54}=\frac{36}{108} =1/3 $
| 19(17-3x)=-(31x-37) | | 3g=4g+17 | | 0.9286x=39 | | 8n2+0=0 | | 9-6x+7=22 | | 10-5t=-10-7t | | 3+8d=2d+3+6d | | 20+-3x(3×20+-3x+3)=23 | | 2(x-3)+2=-0.5(x+6)+9 | | 4x+4+7x=15 | | u-8.8=2.66 | | x+90=143 | | 2e-15=14+3e | | 2(x-3)+2=-1/2(x+6)+9 | | 6d2-92=-80 | | -9g=-6g-6 | | -x+5=5-x | | 12+3r=30 | | (x+14)+20=17 | | -5(2w+1)=25) | | 8=3(x+8)-5x | | -6r-10=50 | | h(-25)=21 | | X+7+x=25 | | 5+(2x)+(2x)=9 | | 53+x=164 | | 20+y=y | | 4x2-38=-6 | | -6+m/2=7 | | x-5(x-1)=x-(2x-3 | | 5y+9=8-9y | | 6^2n=6^2 |