If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 54600 = (550 + 25n)(96 + 3n) Multiply (550 + 25n) * (96 + 3n) 54600 = (550(96 + 3n) + 25n * (96 + 3n)) 54600 = ((96 * 550 + 3n * 550) + 25n * (96 + 3n)) 54600 = ((52800 + 1650n) + 25n * (96 + 3n)) 54600 = (52800 + 1650n + (96 * 25n + 3n * 25n)) 54600 = (52800 + 1650n + (2400n + 75n2)) Combine like terms: 1650n + 2400n = 4050n 54600 = (52800 + 4050n + 75n2) Solving 54600 = 52800 + 4050n + 75n2 Solving for variable 'n'. Combine like terms: 54600 + -52800 = 1800 1800 + -4050n + -75n2 = 52800 + 4050n + 75n2 + -52800 + -4050n + -75n2 Reorder the terms: 1800 + -4050n + -75n2 = 52800 + -52800 + 4050n + -4050n + 75n2 + -75n2 Combine like terms: 52800 + -52800 = 0 1800 + -4050n + -75n2 = 0 + 4050n + -4050n + 75n2 + -75n2 1800 + -4050n + -75n2 = 4050n + -4050n + 75n2 + -75n2 Combine like terms: 4050n + -4050n = 0 1800 + -4050n + -75n2 = 0 + 75n2 + -75n2 1800 + -4050n + -75n2 = 75n2 + -75n2 Combine like terms: 75n2 + -75n2 = 0 1800 + -4050n + -75n2 = 0 Factor out the Greatest Common Factor (GCF), '75'. 75(24 + -54n + -1n2) = 0 Ignore the factor 75.Subproblem 1
Set the factor '(24 + -54n + -1n2)' equal to zero and attempt to solve: Simplifying 24 + -54n + -1n2 = 0 Solving 24 + -54n + -1n2 = 0 Begin completing the square. Divide all terms by -1 the coefficient of the squared term: Divide each side by '-1'. -24 + 54n + n2 = 0 Move the constant term to the right: Add '24' to each side of the equation. -24 + 54n + 24 + n2 = 0 + 24 Reorder the terms: -24 + 24 + 54n + n2 = 0 + 24 Combine like terms: -24 + 24 = 0 0 + 54n + n2 = 0 + 24 54n + n2 = 0 + 24 Combine like terms: 0 + 24 = 24 54n + n2 = 24 The n term is 54n. Take half its coefficient (27). Square it (729) and add it to both sides. Add '729' to each side of the equation. 54n + 729 + n2 = 24 + 729 Reorder the terms: 729 + 54n + n2 = 24 + 729 Combine like terms: 24 + 729 = 753 729 + 54n + n2 = 753 Factor a perfect square on the left side: (n + 27)(n + 27) = 753 Calculate the square root of the right side: 27.440845468 Break this problem into two subproblems by setting (n + 27) equal to 27.440845468 and -27.440845468.Subproblem 1
n + 27 = 27.440845468 Simplifying n + 27 = 27.440845468 Reorder the terms: 27 + n = 27.440845468 Solving 27 + n = 27.440845468 Solving for variable 'n'. Move all terms containing n to the left, all other terms to the right. Add '-27' to each side of the equation. 27 + -27 + n = 27.440845468 + -27 Combine like terms: 27 + -27 = 0 0 + n = 27.440845468 + -27 n = 27.440845468 + -27 Combine like terms: 27.440845468 + -27 = 0.440845468 n = 0.440845468 Simplifying n = 0.440845468Subproblem 2
n + 27 = -27.440845468 Simplifying n + 27 = -27.440845468 Reorder the terms: 27 + n = -27.440845468 Solving 27 + n = -27.440845468 Solving for variable 'n'. Move all terms containing n to the left, all other terms to the right. Add '-27' to each side of the equation. 27 + -27 + n = -27.440845468 + -27 Combine like terms: 27 + -27 = 0 0 + n = -27.440845468 + -27 n = -27.440845468 + -27 Combine like terms: -27.440845468 + -27 = -54.440845468 n = -54.440845468 Simplifying n = -54.440845468Solution
The solution to the problem is based on the solutions from the subproblems. n = {0.440845468, -54.440845468}Solution
n = {0.440845468, -54.440845468}
| 30=16+1.5x | | 7(1c-7)=8(1c-8) | | 7x-7=89-5x | | -4q-10=10-2-6q | | 0=-.0005x^2+45x-1012500 | | 9n+n-72=60+24n-216 | | 3=(-6n+6) | | -k-7=5k-6 | | 19.95+0.55x=95.30 | | 9+n+-1+-7n= | | 3t^2+14t-12=0 | | -11=11(1h-4) | | 5x-3(x-2)=-3+4x+5 | | 8d+12=4(3+2d) | | -2w-10=-w | | 4c-5=11x+16 | | 7x+3+5x=11x+4 | | 4-5y=8-y | | -1n=8 | | 7b=8b-7 | | a(3x-8)=b-18 | | 8-6v+1=19+4v | | 2x-4/5=0 | | -3(3x+15)(-10+x)=35 | | 3(x+2)+1=8 | | 19-11a+a+16= | | 7c+5=4c+5 | | 9x-7=6x+23 | | y=(-10+7)+12 | | Y=5x+30 | | 7r-11r=8 | | -9x-10=4x+14 |