If it's not what You are looking for type in the equation solver your own equation and let us solve it.
540=2b-90+3/2b+b+b+45+90
We move all terms to the left:
540-(2b-90+3/2b+b+b+45+90)=0
Domain of the equation: 2b+b+b+45+90)!=0We add all the numbers together, and all the variables
We move all terms containing b to the left, all other terms to the right
2b+b+b+90)!=-45
b∈R
-(4b+3/2b+45)+540=0
We get rid of parentheses
-4b-3/2b-45+540=0
We multiply all the terms by the denominator
-4b*2b-45*2b+540*2b-3=0
Wy multiply elements
-8b^2-90b+1080b-3=0
We add all the numbers together, and all the variables
-8b^2+990b-3=0
a = -8; b = 990; c = -3;
Δ = b2-4ac
Δ = 9902-4·(-8)·(-3)
Δ = 980004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{980004}=\sqrt{4*245001}=\sqrt{4}*\sqrt{245001}=2\sqrt{245001}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(990)-2\sqrt{245001}}{2*-8}=\frac{-990-2\sqrt{245001}}{-16} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(990)+2\sqrt{245001}}{2*-8}=\frac{-990+2\sqrt{245001}}{-16} $
| 14x+8=8x+27 | | x-6x+14=36 | | .05x+.04(36000-x)=1440 | | 1/2(x+1)+5=x-2 | | 3/4y+1/2=31/4 | | x+180=40 | | 3(x+1)=2(x-1.5) | | 3x+1=5.50 | | 8+5n=38 | | r/3-16=-4 | | 1x-(-6)=8 | | y-3(2y-7)=56 | | x*3+20=84 | | -0.5w=4.3 | | 2p-4=p+7 | | 9-4n=33 | | 476/14=578/d | | 8+5n=28 | | 4/7n=5/14n=39 | | 8+3x=5x-3 | | -12+6x=6+5( | | 2x-10=-2(x+5) | | 12+9n=57 | | 12+x-6=430 | | 5/6c+3/6=4/6 | | 144d^2-96d+16=0 | | 3x+10/6-5/3(4-×)=2x-3/8 | | 8+22=-15x+30 | | .09x+.08(42000-x)=3670 | | r+3=4r+28 | | (6x-8)=(7x-3) | | Y9/x=x |