54/7i+4=3/5i

Simple and best practice solution for 54/7i+4=3/5i equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 54/7i+4=3/5i equation:



54/7i+4=3/5i
We move all terms to the left:
54/7i+4-(3/5i)=0
Domain of the equation: 7i!=0
i!=0/7
i!=0
i∈R
Domain of the equation: 5i)!=0
i!=0/1
i!=0
i∈R
We add all the numbers together, and all the variables
54/7i-(+3/5i)+4=0
We get rid of parentheses
54/7i-3/5i+4=0
We calculate fractions
270i/35i^2+(-21i)/35i^2+4=0
We multiply all the terms by the denominator
270i+(-21i)+4*35i^2=0
Wy multiply elements
140i^2+270i+(-21i)=0
We get rid of parentheses
140i^2+270i-21i=0
We add all the numbers together, and all the variables
140i^2+249i=0
a = 140; b = 249; c = 0;
Δ = b2-4ac
Δ = 2492-4·140·0
Δ = 62001
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$i_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$i_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{62001}=249$
$i_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(249)-249}{2*140}=\frac{-498}{280} =-1+109/140 $
$i_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(249)+249}{2*140}=\frac{0}{280} =0 $

See similar equations:

| 56=k+5 | | 2t+10=31 | | 0.25^(x+2)=16 | | 7+6n=331 | | 9x-15=6x+27 | | 3/5x+30=50 | | 18x^2+15x-7=(3x-1)(. | | 47+37=y | | 6x+3=5-8x | | h2=3 | | 5=c4 | | -7/21=x/15 | | 88b+74=44 | | 5y-3=32-8 | | 4c=38 | | x=2(1,5x-6)=16 | | 12x-2/3=831/3= | | 12+5+n=17 | | X÷2^3=x+14 | | 3x+10(3x)-28=180 | | 6(3x-8)=x(6-4) | | -2(x+3)=-3(x+-2) | | 41-3f=20 | | -2(x-3)=-3(x+-2) | | 8+2g-79g=5 | | (7k+3+5k+7)÷2=k+15 | | 4/5d-3=5 | | 8.9=x+4.5 | | 2r+10+48=90 | | 0.16(y-6)+0.02=0.10y-0.03(30) | | 1+2x•2x=145. | | 2x^2=0.32 |

Equations solver categories