54+(-9x-5)(10-2x)=180

Simple and best practice solution for 54+(-9x-5)(10-2x)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 54+(-9x-5)(10-2x)=180 equation:



54+(-9x-5)(10-2x)=180
We move all terms to the left:
54+(-9x-5)(10-2x)-(180)=0
We add all the numbers together, and all the variables
(-9x-5)(-2x+10)+54-180=0
We add all the numbers together, and all the variables
(-9x-5)(-2x+10)-126=0
We multiply parentheses ..
(+18x^2-90x+10x-50)-126=0
We get rid of parentheses
18x^2-90x+10x-50-126=0
We add all the numbers together, and all the variables
18x^2-80x-176=0
a = 18; b = -80; c = -176;
Δ = b2-4ac
Δ = -802-4·18·(-176)
Δ = 19072
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{19072}=\sqrt{64*298}=\sqrt{64}*\sqrt{298}=8\sqrt{298}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-8\sqrt{298}}{2*18}=\frac{80-8\sqrt{298}}{36} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+8\sqrt{298}}{2*18}=\frac{80+8\sqrt{298}}{36} $

See similar equations:

| a^{2}+2^{2}=6^{2} | | 25/100=x/88 | | 25/100=x/16 | | 7(z−89)=35 | | x^2+49+x^2=x^2+1 | | 42=2x+8=13x-5 | | 2x+2+3x+4=5x+x+3 | | 60/100=x/48 | | 5.4g+7=3.4g+19 | | 2(2x-3)=6x-5 | | 1763=48+s | | 1/8(8x-6)-2x=-5 | | 10=-9–x | | 1763=48s | | 11/12=x/15 | | y/3=5/4 | | 2+6x=12x | | 18=2b+4 | | 12.4x+3.6=-5.6x-5.4 | | 2/9=k/18 | | -27=9(d-96) | | 46=5x+7 | | 48/x=60/100 | | g-4=59 | | -7k+2=86 | | 42=11-x | | 4x+6=6x+30 | | 3+x=-23-28 | | 46=5x+7=12x-3 | | 7k−6k=1 | | 2x+3x–6=59 | | x÷4=69 |

Equations solver categories