53/5x-77/10=62/3x+12

Simple and best practice solution for 53/5x-77/10=62/3x+12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 53/5x-77/10=62/3x+12 equation:



53/5x-77/10=62/3x+12
We move all terms to the left:
53/5x-77/10-(62/3x+12)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 3x+12)!=0
x∈R
We get rid of parentheses
53/5x-62/3x-12-77/10=0
We calculate fractions
(-3465x^2)/150x^2+1590x/150x^2+(-3100x)/150x^2-12=0
We multiply all the terms by the denominator
(-3465x^2)+1590x+(-3100x)-12*150x^2=0
Wy multiply elements
(-3465x^2)-1800x^2+1590x+(-3100x)=0
We get rid of parentheses
-3465x^2-1800x^2+1590x-3100x=0
We add all the numbers together, and all the variables
-5265x^2-1510x=0
a = -5265; b = -1510; c = 0;
Δ = b2-4ac
Δ = -15102-4·(-5265)·0
Δ = 2280100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{2280100}=1510$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1510)-1510}{2*-5265}=\frac{0}{-10530} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1510)+1510}{2*-5265}=\frac{3020}{-10530} =-302/1053 $

See similar equations:

| 6(8-2y)=84 | | 13+3p-5=23+3p | | -.8x^2+24x-90=0 | | 2/3(12x-18)=4x | | -2x=+3x+10 | | -4x+2(x+2)=-8 | | 7x−10=28 | | 7-(2n-9)=7-3n | | n/6=30= | | -8n-21=-8(n+4)+4 | | 54=7x+6x+2 | | -.8x^2+24x+90=0 | | 3y+5=-2y-25 | | 6x5=5x6 | | 10x+10=10x+15 | | -2x+2=18-4x | | 3(x+2)-3+x+17=40 | | -3x-22=-x-3(x+6) | | 9(d-88)=72 | | 8+4x=-10+10 | | 3x^2−4x−2=0 | | 2f-14=2f+2 | | 4x+7+5x=52 | | 9−6x−1=3x+8 | | 68=8v+-20 | | 7w+4(w-2)=13 | | 6n+16-n+4=n | | -19+4n=-7(-n+4) | | -14+y/5=-15 | | 7a+20=-50. | | 3x+5(2x+)=4 | | 42=4x+4x+10 |

Equations solver categories