If it's not what You are looking for type in the equation solver your own equation and let us solve it.
52x^2=48
We move all terms to the left:
52x^2-(48)=0
a = 52; b = 0; c = -48;
Δ = b2-4ac
Δ = 02-4·52·(-48)
Δ = 9984
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9984}=\sqrt{256*39}=\sqrt{256}*\sqrt{39}=16\sqrt{39}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{39}}{2*52}=\frac{0-16\sqrt{39}}{104} =-\frac{16\sqrt{39}}{104} =-\frac{2\sqrt{39}}{13} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{39}}{2*52}=\frac{0+16\sqrt{39}}{104} =\frac{16\sqrt{39}}{104} =\frac{2\sqrt{39}}{13} $
| 7x+5(2x+2)=13 | | x^2+0.00074x-0.0001628=0 | | 7(x—6)=28 | | 7x+5(-2x+2)=13 | | 3(x-4)=5(x+4) | | 8(y-2)=3(y-8) | | 75=−75(x+5) | | 4x=24x+40 | | 5(5+6x)=-2-39 | | 33+5x=5(x+5) | | 33+5x=5(x+5)+ | | 6(2d+3)=54 | | 4x-3=3+4x | | x=(4x-85) | | x-1=-9+x | | 2x=23+4 | | -5x-2=1-5x | | (4x-85)=x | | 13=17x/6 | | (4x85)=x | | 4x/2.50=12.30 | | 56=7x-3(x-4) | | 5x-6=(6x-8)+20 | | 6x+8/4=11 | | -z-3z=12 | | 9(a+4)=6(a+3) | | 14(8x+12)=7 | | z/2-11=-15 | | 2(5y+2)=9y+15 | | -8z-3=13 | | 5 =p+74 75 =p+74 | | x/19=-3 |