528=(5500)(x)(2)

Simple and best practice solution for 528=(5500)(x)(2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 528=(5500)(x)(2) equation:



528=(5500)(x)(2)
We move all terms to the left:
528-((5500)(x)(2))=0
determiningTheFunctionDomain -5500x2+528=0
We add all the numbers together, and all the variables
-5500x^2+528=0
a = -5500; b = 0; c = +528;
Δ = b2-4ac
Δ = 02-4·(-5500)·528
Δ = 11616000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{11616000}=\sqrt{774400*15}=\sqrt{774400}*\sqrt{15}=880\sqrt{15}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-880\sqrt{15}}{2*-5500}=\frac{0-880\sqrt{15}}{-11000} =-\frac{880\sqrt{15}}{-11000} =-\frac{2\sqrt{15}}{-25} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+880\sqrt{15}}{2*-5500}=\frac{0+880\sqrt{15}}{-11000} =\frac{880\sqrt{15}}{-11000} =\frac{2\sqrt{15}}{-25} $

See similar equations:

| 15.34=y−-11.01 | | 6^-6x=7 | | 1/4z=24 | | 3a-6a=-3 | | -8b+b=-21 | | ^2+6x+5=0 | | 5x+10=7x+(-3) | | (0)(x)+(0.4)(75-×)=(0.15)(75) | | x=-5+7=2 | | y=-4×+9 | | (63-3x)+(4x)=180 | | 20+6n=7(n+2) | | (5x)+(10x)=180 | | 4+9xx=5 | | -2y+9-9=7-9 | | 150x=72 | | 2(2x+1)=4(3x-1)+2 | | x-0.1x=41 | | 4/7=2x/5 | | 4/y=3/7 | | (x-2)^2-5=0 | | 3(3n+2)=9(6n+3)+4 | | 4x+7=4(x-5) | | 6=2{x+8}-5x | | 4,7x+3.8=13.2 | | (y+3)^2=9 | | 1/2/x=2/0.8 | | 1.5x=-12.75 | | 4(1.05)^x+1=8 | | z−98=-74 | | X×2-7x=0 | | x-3=10/8(10-4x) |

Equations solver categories