If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50x^2=25x
We move all terms to the left:
50x^2-(25x)=0
a = 50; b = -25; c = 0;
Δ = b2-4ac
Δ = -252-4·50·0
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{625}=25$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-25}{2*50}=\frac{0}{100} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+25}{2*50}=\frac{50}{100} =1/2 $
| x+(x+8)=31 | | 15=-2(2x-1 | | 32-x=x-8 | | 8x-3(4x-5)=7 | | 30-16x=20-8x | | x+(2x-8)=32 | | (X+6)2-(x+4)3=5 | | (8x-4)=(6x+18) | | 1+9x=28 | | 92987a+998277=8288282827 | | 10+3v=22 | | 2n+3=54 | | 11a-14=7a+6 | | 5a-9=6a-15 | | -36-4a=(1-3a) | | 18+3x=72+x | | 50x=30x | | 5^y+2=8 | | 3x2+2x-800=0 | | 5=m+4-4 | | 3x^=-9 | | 9x(2)+3=147 | | 5=1-x+4 | | X+1.6x+(1.6^2)x=200 | | X+1.6x+1.6^2x=200 | | Y=-2x^2-9x-4 | | x+4=6+4 | | (2x)2=128 | | x×3+4=16 | | 6y=5y-4 | | 20f=5f+15 | | 8x+12=13x-13 |