If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50x^2+20x=0
a = 50; b = 20; c = 0;
Δ = b2-4ac
Δ = 202-4·50·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20}{2*50}=\frac{-40}{100} =-2/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20}{2*50}=\frac{0}{100} =0 $
| y+22=69 | | Y=2x+0.75 | | g-44=77 | | e-24=16 | | −8=−e−4 | | X/3+y/2=4 | | 5. −8=−e−4 | | 3x+1/2x=-4 | | 7(x-4}=49 | | y+(y-6)+(3+y÷5)=8 | | 7^-3x+7=49 | | 11=8x+3=6x | | 0.25h+3=6 | | 8x+10=12-30 | | 3/5+2x/10=-2/5+2x/5 | | c-16=-14 | | y+(y-6)+(3+y/5)=8 | | 2/5+2x/10=-2/5+2x/5 | | (x2−x−20)÷(x−5)= | | 40-9b=3b+64 | | -2m=-46 | | (x-6)(x+7)=(x+4)(x-5) | | 9f=135 | | 5c=280 | | 8(3x+4)+1=3(12x-1) | | 8a=136 | | -2+5=f)-4+(-2)= | | -3-3n=13-7n | | -10-5n=3n+50 | | 1+(-2)=e)-5+5= | | 3+(-4)=d)-5+(-5)= | | 3x/6-10=2x+5 |