50=(8.5-2x)(11-2x)

Simple and best practice solution for 50=(8.5-2x)(11-2x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 50=(8.5-2x)(11-2x) equation:



50=(8.5-2x)(11-2x)
We move all terms to the left:
50-((8.5-2x)(11-2x))=0
We add all the numbers together, and all the variables
-((-2x+8.5)(-2x+11))+50=0
We multiply parentheses ..
-((+4x^2-22x-17x+93.5))+50=0
We calculate terms in parentheses: -((+4x^2-22x-17x+93.5)), so:
(+4x^2-22x-17x+93.5)
We get rid of parentheses
4x^2-22x-17x+93.5
We add all the numbers together, and all the variables
4x^2-39x+93.5
Back to the equation:
-(4x^2-39x+93.5)
We get rid of parentheses
-4x^2+39x-93.5+50=0
We add all the numbers together, and all the variables
-4x^2+39x-43.5=0
a = -4; b = 39; c = -43.5;
Δ = b2-4ac
Δ = 392-4·(-4)·(-43.5)
Δ = 825
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{825}=\sqrt{25*33}=\sqrt{25}*\sqrt{33}=5\sqrt{33}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(39)-5\sqrt{33}}{2*-4}=\frac{-39-5\sqrt{33}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(39)+5\sqrt{33}}{2*-4}=\frac{-39+5\sqrt{33}}{-8} $

See similar equations:

| 9f+3=3 | | 7n-6=-43 | | 2x10^2x=2800 | | 8-4x/3=0 | | 2x+x-6=4 | | 58b+5=7 | | 272=79-u | | -13=5u-8 | | 2/6=1/x | | -7x-20=5x+16 | | n÷(-2)=22 | | 294z-6-6)=166-46 | | 13+12x=10x-9 | | 12=x*0.64 | | 1.5-2.3x=1.2x-5.5 | | 3x+12=-5x-20 | | 6y=2y-8y | | 3(y^2+8)=132 | | P(x)=-7x⁶+9-5x | | X2+14x–3=0 | | x-5/x+5=0 | | 160/3=x | | 5x70=5x(x10) | | 6.5x=3/4 | | 5(u-5)-7u=-27 | | 10x-4/5=9x+11/5 | | 20.5x=180 | | (7x+2)°=(5x-14)° | | x/4-9/3=(2x-5)/2+x/3 | | 2(w+3)-6w=26 | | 10x+8=-92 | | 10w=3w+14 |

Equations solver categories