5/x=(x+1)/4

Simple and best practice solution for 5/x=(x+1)/4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/x=(x+1)/4 equation:



5/x=(x+1)/4
We move all terms to the left:
5/x-((x+1)/4)=0
Domain of the equation: x!=0
x∈R
We calculate fractions
()/4x^2+(-((x+1)*x)/4x^2=0
We multiply all the terms by the denominator
(-((x+1)*x)+()=0
We calculate terms in parentheses: +(-((x+1)*x)+(), so:
-((x+1)*x)+(
We add all the numbers together, and all the variables
-((x+1)*x)
We calculate terms in parentheses: -((x+1)*x), so:
(x+1)*x
We multiply parentheses
x^2+x
Back to the equation:
-(x^2+x)
We get rid of parentheses
-x^2-x
We add all the numbers together, and all the variables
-1x^2-1x
Back to the equation:
+(-1x^2-1x)
We get rid of parentheses
-1x^2-1x=0
a = -1; b = -1; c = 0;
Δ = b2-4ac
Δ = -12-4·(-1)·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-1}{2*-1}=\frac{0}{-2} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+1}{2*-1}=\frac{2}{-2} =-1 $

See similar equations:

| 5x+1x=12+7x | | p=1-(1+0.0075/0.0075))^15 | | (7x/4)-(3x-8)=11 | | 5x+3x-12=20 | | v+4.37=6.18 | | -6(g+12)=24 | | b/5-2=3 | | -9x+48=-2 | | y+-12=42 | | y+2.2=8.25 | | 6v+14=86 | | 82=2(7r-8) | | 5x+8–2x=26 | | 63=9(w-85) | | s/7=28 | | 14h+4h+3h-19h+4h=12 | | 28=0.2*x+0.027*x | | 8(b+3)=88 | | 184=8(2+7x) | | 195+3x=360 | | 3x+x=8–12 | | 16+5y=-11 | | 15=-3(2)2x | | -9x+48=21 | | 2x+26)+(x+32)=180 | | 77+4x=360 | | 72+5+4x=360 | | w-87÷6=2 | | 18c-30=7(3c-9) | | 16=4+2n | | -40^2x+800x=1800x40^X | | 12w+17=8w+65 |

Equations solver categories