5/x-1-7/x=3/2x-2

Simple and best practice solution for 5/x-1-7/x=3/2x-2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/x-1-7/x=3/2x-2 equation:



5/x-1-7/x=3/2x-2
We move all terms to the left:
5/x-1-7/x-(3/2x-2)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: 2x-2)!=0
x∈R
We get rid of parentheses
5/x-7/x-3/2x+2-1=0
We calculate fractions
(-14x+5)/2x^2+(-3x)/2x^2+2-1=0
We add all the numbers together, and all the variables
(-14x+5)/2x^2+(-3x)/2x^2+1=0
We multiply all the terms by the denominator
(-14x+5)+(-3x)+1*2x^2=0
Wy multiply elements
2x^2+(-14x+5)+(-3x)=0
We get rid of parentheses
2x^2-14x-3x+5=0
We add all the numbers together, and all the variables
2x^2-17x+5=0
a = 2; b = -17; c = +5;
Δ = b2-4ac
Δ = -172-4·2·5
Δ = 249
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-17)-\sqrt{249}}{2*2}=\frac{17-\sqrt{249}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-17)+\sqrt{249}}{2*2}=\frac{17+\sqrt{249}}{4} $

See similar equations:

| -32x=2.4 | | 8(z)=10 | | x+10/6=x/3 | | F(x)=-5+8x^2 | | 0.02x=0.015x+600 | | m÷4=³/7 | | -10q=8-9q | | 17=5-(b+6) | | -1(4m-3)-1m=-5-5m | | 10x-14=6x-2 | | 81=(x-7)2x+x | | 18+23=x | | 12w=21+5w | | x2+16x=57 | | 12w=21 | | -56-8y=56 | | x/18-1/3=15 | | -x-10=9 | | 2x-6+4x=-30 | | 22x+50=30 | | 5u+3(u-6)=14 | | C=r×6,28 | | -5f=6-6f | | 9-m/8=20 | | 12=a/5-7= | | (7.3x)+(7.3x)+(9.2x-3)+(9.2x-3)=324 | | -3w=-5w+2w | | 2(6-7k)=-14k+12 | | 4/7a-2=1/3a+5 | | 6x^2-13x=12 | | 0.5x+8.3=12.4 | | 9a-6=3a+2 |

Equations solver categories