If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5/9x=325x
We move all terms to the left:
5/9x-(325x)=0
Domain of the equation: 9x!=0We add all the numbers together, and all the variables
x!=0/9
x!=0
x∈R
-325x+5/9x=0
We multiply all the terms by the denominator
-325x*9x+5=0
Wy multiply elements
-2925x^2+5=0
a = -2925; b = 0; c = +5;
Δ = b2-4ac
Δ = 02-4·(-2925)·5
Δ = 58500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{58500}=\sqrt{900*65}=\sqrt{900}*\sqrt{65}=30\sqrt{65}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-30\sqrt{65}}{2*-2925}=\frac{0-30\sqrt{65}}{-5850} =-\frac{30\sqrt{65}}{-5850} =-\frac{\sqrt{65}}{-195} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+30\sqrt{65}}{2*-2925}=\frac{0+30\sqrt{65}}{-5850} =\frac{30\sqrt{65}}{-5850} =\frac{\sqrt{65}}{-195} $
| p=-84+(-13) | | 3x+5+x+x-20=180 | | 5x+2=-12-2x | | 144=6p+7(8p-6) | | 2.2x=-34 | | 13u=9u+24 | | 3y+25=y+3 | | 2n+22=10 | | x+25+3x+2x+5=180 | | 5c+16.5=-13.5+10c | | 15-2u=3u | | 10x-4+3x+3=180 | | 325x=5/9 | | f/3-11=14 | | 3^3x-4(3^x+1)+27=0 | | 3(q-5=2(9+5)= | | 11=p/2 | | 4((x)-(5))=(4x)-(20) | | -11t+16=-14-16t-5 | | u+3/5=1/4 | | 3m+108=m^2 | | 11=p/15 | | 5=x+48/9 | | 18-5x=-6x-5x | | 9|-3x+1|-5=-5 | | P=W÷t | | 4y-3.4=5y | | 1/2(b-3)=21/2 | | -5f-2=-12-4f | | 5x+25=2x+22 | | 8=11+k | | 10=13-2(-3-3w) |