If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5/9k+2/7=5+5/8k
We move all terms to the left:
5/9k+2/7-(5+5/8k)=0
Domain of the equation: 9k!=0
k!=0/9
k!=0
k∈R
Domain of the equation: 8k)!=0We add all the numbers together, and all the variables
k!=0/1
k!=0
k∈R
5/9k-(5/8k+5)+2/7=0
We get rid of parentheses
5/9k-5/8k-5+2/7=0
We calculate fractions
1152k^2/3528k^2+1960k/3528k^2+(-2205k)/3528k^2-5=0
We multiply all the terms by the denominator
1152k^2+1960k+(-2205k)-5*3528k^2=0
Wy multiply elements
1152k^2-17640k^2+1960k+(-2205k)=0
We get rid of parentheses
1152k^2-17640k^2+1960k-2205k=0
We add all the numbers together, and all the variables
-16488k^2-245k=0
a = -16488; b = -245; c = 0;
Δ = b2-4ac
Δ = -2452-4·(-16488)·0
Δ = 60025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{60025}=245$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-245)-245}{2*-16488}=\frac{0}{-32976} =0 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-245)+245}{2*-16488}=\frac{490}{-32976} =-245/16488 $
| -0.8x-14=1.2x | | -4(1+4n)=-4+-16 | | 7x+8+9x-18=150 | | 5(x-4)=(8x+6) | | 30-6p=7(p* | | 9x+7=5+20 | | -(n+3)-4=-11-2n | | 120=3(n) | | 120=3/5(n) | | 120=5(n) | | 0.7(4b+3)=5.6 | | -20=430-x | | 20=430-x | | x/3-11=-19 | | m-11/4=2 | | 3(2x-1)-x=6x-1 | | 1.6(v-2)=3.84 | | 2(z+-1)=8 | | 2g-2.1=3.9 | | x-430=x+20 | | 5x+3^=2x+7 | | a-4a=2a+1=5a | | C=37.34+0.25x | | (X+5)^2+6(x+5)+8=0 | | J+8-6j=-10-7j | | -3r+10=4+3r | | (x+5)^2=(2x-14)^2 | | 412.28=240+0.59x | | -3x5=-15 | | -5b-10b=-5+5b | | 3z-10=z+10-4 | | H=5w+10 |