5/8g-6=1/4g,g

Simple and best practice solution for 5/8g-6=1/4g,g equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/8g-6=1/4g,g equation:



5/8g-6=1/4g.g
We move all terms to the left:
5/8g-6-(1/4g.g)=0
Domain of the equation: 8g!=0
g!=0/8
g!=0
g∈R
Domain of the equation: 4g.g)!=0
g!=0/1
g!=0
g∈R
We add all the numbers together, and all the variables
5/8g-(+1/4g.g)-6=0
We get rid of parentheses
5/8g-1/4g.g-6=0
We calculate fractions
20g/32g^2+(-8g)/32g^2-6=0
We multiply all the terms by the denominator
20g+(-8g)-6*32g^2=0
Wy multiply elements
-192g^2+20g+(-8g)=0
We get rid of parentheses
-192g^2+20g-8g=0
We add all the numbers together, and all the variables
-192g^2+12g=0
a = -192; b = 12; c = 0;
Δ = b2-4ac
Δ = 122-4·(-192)·0
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{144}=12$
$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12}{2*-192}=\frac{-24}{-384} =1/16 $
$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12}{2*-192}=\frac{0}{-384} =0 $

See similar equations:

| 14/p=2p=7 | | 6x+(x-4)-(7x+1)=3 | | -13r-10r=-15 | | 4b-6=20 | | 1,038=6(x+19) | | 4.50+6r=17.50+4r,r | | 9x-3x-4x=18 | | 2b+b-2b+2b-2b=20 | | g÷12-13=40 | | 3x=3-2x | | N+3n-n=18 | | 13r+5r-2r-12r=20 | | 2.50+0.15m=1.00+0.20m,m | | 5w-3w=2 | | 20j+-3j-5j=12 | | 8a-3a-a-3a=8 | | 5x-12=9x-18 | | 4=3-5x | | 6q+q-6q+q-q=19 | | -1.15x=10 | | 4-x/2=13 | | -8=x/3+-12 | | 480+16d=32d,d | | 0=180s^2-186s-360 | | 17u-9u+3u-9u=14 | | 246=8x+3 | | 1.15x=10 | | -8=x/3-12 | | 8x88=x11 | | 6x+4=2(x+3)+2 | | 4s-7s-8s-9s-14s=-16 | | 9x–6=5x-14 |

Equations solver categories