5/7k-9=2k/3k-21

Simple and best practice solution for 5/7k-9=2k/3k-21 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/7k-9=2k/3k-21 equation:



5/7k-9=2k/3k-21
We move all terms to the left:
5/7k-9-(2k/3k-21)=0
Domain of the equation: 7k!=0
k!=0/7
k!=0
k∈R
Domain of the equation: 3k-21)!=0
k∈R
We get rid of parentheses
5/7k-2k/3k+21-9=0
We calculate fractions
(-14k^2)/21k^2+15k/21k^2+21-9=0
We add all the numbers together, and all the variables
(-14k^2)/21k^2+15k/21k^2+12=0
We multiply all the terms by the denominator
(-14k^2)+15k+12*21k^2=0
Wy multiply elements
(-14k^2)+252k^2+15k=0
We get rid of parentheses
-14k^2+252k^2+15k=0
We add all the numbers together, and all the variables
238k^2+15k=0
a = 238; b = 15; c = 0;
Δ = b2-4ac
Δ = 152-4·238·0
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{225}=15$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-15}{2*238}=\frac{-30}{476} =-15/238 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+15}{2*238}=\frac{0}{476} =0 $

See similar equations:

| .5(2x+8)+2=10-x | | n/5-12=-6 | | 8+2(1+7x)=94 | | X+1/2x+8=41 | | n/6-7=-3 | | n/16=40/25 | | 1/8-1/9y=5/9 | | x/31+x/5=8 | | -7=6p | | 6×(z-2)÷4=10 | | √25^x+2/125=1 | | 6(z-2)÷4=10 | | 5-3(x+2)=5x-9 | | 5(z-4)-z=4=4z-20 | | 5(z-4)-z=4=4z-2 | | 6.1h=-3.2h+9.3 | | 1/2x-1/4=5/2x-2 | | (8x-3)(x-6)=0 | | 7=(-5p)+4p | | 7=-1p | | 75=21^x | | -14/3=7w | | 1k+7-7=k-7-7 | | -5u/7=-35 | | (5)/(8)p=17.50 | | 9y-7=19+9y | | x+7/16=1/8+(x-3)/6 | | -12=-3/5w | | 1/2(x-4)=3x+5 | | x+7/16=1/8+x-3/6 | | 10x/8x+7=1 | | 3d-5+5=12-3d+5 |

Equations solver categories