5/6z=10z=10

Simple and best practice solution for 5/6z=10z=10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/6z=10z=10 equation:



5/6z=10z=10
We move all terms to the left:
5/6z-(10z)=0
Domain of the equation: 6z!=0
z!=0/6
z!=0
z∈R
We add all the numbers together, and all the variables
-10z+5/6z=0
We multiply all the terms by the denominator
-10z*6z+5=0
Wy multiply elements
-60z^2+5=0
a = -60; b = 0; c = +5;
Δ = b2-4ac
Δ = 02-4·(-60)·5
Δ = 1200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1200}=\sqrt{400*3}=\sqrt{400}*\sqrt{3}=20\sqrt{3}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{3}}{2*-60}=\frac{0-20\sqrt{3}}{-120} =-\frac{20\sqrt{3}}{-120} =-\frac{\sqrt{3}}{-6} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{3}}{2*-60}=\frac{0+20\sqrt{3}}{-120} =\frac{20\sqrt{3}}{-120} =\frac{\sqrt{3}}{-6} $

See similar equations:

| j/2+27=35 | | 4(n+1)=-2(4+n) | | c/3-7=1 | | -0.9x+2.36=-0.7x+5.16 | | 8/5(a)=-6 | | 3(4x-5)=2x-1 | | z/2+1=4 | | 2.25X15=x | | (14x-18)+(5x=8)=180 | | B(x)=25.25-0.05 | | 16+9=9y−2 | | 6-4b=22 | | 5x-(3x+6)=18 | | 4x2x=30 | | 7/11=4÷x | | ​3​​2x​​=−5 | | 5m-10=-22+m | | 8x+3=8x-4 | | 6u-24=-8(u-4) | | 2(n-3)=4n+1 | | 50-10x=30-3x | | 12x2+5x-2=0 | | 9-2w/6=13/18 | | -6x+2=-2-6x | | c/2+3=6 | | |x/4|=18 | | 4x-3=-2+4x | | 50-10x=40-4x | | 3x+11=3(x-1.5) | | 25/4x=9 | | -7(-x-8)+4(1+7x)=-80 | | 8p+7(3-p)-(4p-1)+8=-1 |

Equations solver categories