5/6x-5=31+1/3x

Simple and best practice solution for 5/6x-5=31+1/3x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/6x-5=31+1/3x equation:



5/6x-5=31+1/3x
We move all terms to the left:
5/6x-5-(31+1/3x)=0
Domain of the equation: 6x!=0
x!=0/6
x!=0
x∈R
Domain of the equation: 3x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
5/6x-(1/3x+31)-5=0
We get rid of parentheses
5/6x-1/3x-31-5=0
We calculate fractions
15x/18x^2+(-6x)/18x^2-31-5=0
We add all the numbers together, and all the variables
15x/18x^2+(-6x)/18x^2-36=0
We multiply all the terms by the denominator
15x+(-6x)-36*18x^2=0
Wy multiply elements
-648x^2+15x+(-6x)=0
We get rid of parentheses
-648x^2+15x-6x=0
We add all the numbers together, and all the variables
-648x^2+9x=0
a = -648; b = 9; c = 0;
Δ = b2-4ac
Δ = 92-4·(-648)·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{81}=9$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9}{2*-648}=\frac{-18}{-1296} =1/72 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9}{2*-648}=\frac{0}{-1296} =0 $

See similar equations:

| 42x²-13x-40=0 | | 5(×-6)-2=2x-5 | | 15=7+3k-18 | | X2-10x-9=0 | | 6^3x+2=4^2x-1 | | 2(-1-y)+3y=1 | | 2x+6.60=19 | | 7(9+3y)+5y=1 | | 2x^2+12-80=0 | | -2-2y+3y=1 | | (y-5)2-28=0 | | 8(7x+8)=2(x+5) | | 7y-7=4y-2 | | 1/3+a=11/4 | | 42=19x-12x | | 2x+63/5=19 | | −4.8+2.5=9.1n−8.1n−7.3 | | 5–n=8n | | -42=2x+8+3x | | 31-3x=90 | | x+194=67.9 | | 28+y=14 | | 5x+4*(-120/26)=180 | | 4(8x+3)=-3(7x-4) | | 11x-53=180 | | 3=4(x-5)+4-3x | | 3x+1=4x-2x= | | 5/7=x/3x= | | 16^7=4^x | | 14x=-3/4 | | 16−2t=23​t+9 | | 11+5t+2(t-5)=8 |

Equations solver categories