5/6x+7/12=2+1/18x

Simple and best practice solution for 5/6x+7/12=2+1/18x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/6x+7/12=2+1/18x equation:



5/6x+7/12=2+1/18x
We move all terms to the left:
5/6x+7/12-(2+1/18x)=0
Domain of the equation: 6x!=0
x!=0/6
x!=0
x∈R
Domain of the equation: 18x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
5/6x-(1/18x+2)+7/12=0
We get rid of parentheses
5/6x-1/18x-2+7/12=0
We calculate fractions
756x^2/1296x^2+1080x/1296x^2+(-72x)/1296x^2-2=0
We multiply all the terms by the denominator
756x^2+1080x+(-72x)-2*1296x^2=0
Wy multiply elements
756x^2-2592x^2+1080x+(-72x)=0
We get rid of parentheses
756x^2-2592x^2+1080x-72x=0
We add all the numbers together, and all the variables
-1836x^2+1008x=0
a = -1836; b = 1008; c = 0;
Δ = b2-4ac
Δ = 10082-4·(-1836)·0
Δ = 1016064
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1016064}=1008$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1008)-1008}{2*-1836}=\frac{-2016}{-3672} =28/51 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1008)+1008}{2*-1836}=\frac{0}{-3672} =0 $

See similar equations:

| f(-2)=0+3 | | y”-y=4 | | (g)/(-3)+4=-6 | | 8(4x-6)=9x+7 | | 21v=8v2-9 | | -13=-4c+-1 | | 5(2x+11)=9 | | 3(m-2)=-2(4m-11) | | 21v=8^-9 | | v^2=9/25 | | 2b-6+3-3b=6 | | 6r-8=2(3r-4) | | 1.3=c/6 | | -5y+8=-12 | | x²-4x-34=0 | | 30=9b | | 33/u=3 | | 2a+9=8a-3a | | n+8=-7 | | 2(6-4v)+6v=-36+6v | | 8=(22-x)/4 | | 2=38/y | | 6=-3/8w | | 1.8=c/4 | | -38+2v=8(1+6v) | | 8(w-1)=-4(w-4) | | -6+8m=-6(1-8m) | | 1,2/n=5/18 | | 5-2=-4x-7 | | 2-8y-3-8=6 | | 4=4g-12 | | 1/5y=1/30 |

Equations solver categories