5/6x+3=2/3x-15

Simple and best practice solution for 5/6x+3=2/3x-15 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/6x+3=2/3x-15 equation:



5/6x+3=2/3x-15
We move all terms to the left:
5/6x+3-(2/3x-15)=0
Domain of the equation: 6x!=0
x!=0/6
x!=0
x∈R
Domain of the equation: 3x-15)!=0
x∈R
We get rid of parentheses
5/6x-2/3x+15+3=0
We calculate fractions
15x/18x^2+(-12x)/18x^2+15+3=0
We add all the numbers together, and all the variables
15x/18x^2+(-12x)/18x^2+18=0
We multiply all the terms by the denominator
15x+(-12x)+18*18x^2=0
Wy multiply elements
324x^2+15x+(-12x)=0
We get rid of parentheses
324x^2+15x-12x=0
We add all the numbers together, and all the variables
324x^2+3x=0
a = 324; b = 3; c = 0;
Δ = b2-4ac
Δ = 32-4·324·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9}=3$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3}{2*324}=\frac{-6}{648} =-1/108 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3}{2*324}=\frac{0}{648} =0 $

See similar equations:

| 10f-30=15 | | 35=10/x | | 5/2k-1=31 | | 516−3p=32​ p+ | | 364=65x+39 | | 7m7m+1m= | | 3x-13=7x+57 | | 18a+a=38 | | 3x-5+4x=7x-3 | | 1+4n=-1-2(-n) | | 14d-13d=17 | | -4m-7=3m+14 | | 2(2z=9)=50 | | (10x+2=)-(3x-4=) | | 4(2x+11)-35=8 | | (x+1)/5+(x+2)/6=(x-1)/4+(x-2)/10 | | X+15=15x+15 | | 7-1n=15 | | 18s-15s=12 | | -3x+24=6 | | -3=8-3x | | 12=x=8 | | X=124x-3 | | 3x+6,-4=11 | | 2.10-2(4m-8)=2 | | 5n+7n-3=10n+1 | | (9x+38)+(2x+42)=180 | | ​2=3​a​+8 | | 3x–6=3x–-3 | | X+15=140=15x+15 | | 5*1.25=a | | (n-1/10)=1/2 |

Equations solver categories