If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5/6m-1/3-1/4m=41/3
We move all terms to the left:
5/6m-1/3-1/4m-(41/3)=0
Domain of the equation: 6m!=0
m!=0/6
m!=0
m∈R
Domain of the equation: 4m!=0We add all the numbers together, and all the variables
m!=0/4
m!=0
m∈R
5/6m-1/4m-1/3-(+41/3)=0
We get rid of parentheses
5/6m-1/4m-1/3-41/3=0
We calculate fractions
(-3936m^2-1)/216m^2+180m/216m^2+(-54m)/216m^2=0
We multiply all the terms by the denominator
(-3936m^2-1)+180m+(-54m)=0
We get rid of parentheses
-3936m^2+180m-54m-1=0
We add all the numbers together, and all the variables
-3936m^2+126m-1=0
a = -3936; b = 126; c = -1;
Δ = b2-4ac
Δ = 1262-4·(-3936)·(-1)
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(126)-2\sqrt{33}}{2*-3936}=\frac{-126-2\sqrt{33}}{-7872} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(126)+2\sqrt{33}}{2*-3936}=\frac{-126+2\sqrt{33}}{-7872} $
| j-67/5=4 | | b-1.08=8.50 | | 10-3n+8=380 | | 20x+48+-5x+32=180 | | 8y+5(y+4)=-32 | | 75x+1=1.50x | | 2n+14=32 | | -4.014x=20.4714 | | 10p-1=19 | | -6x+4(x-2)=-6 | | 10=s-11 | | 2x-35=-5-28+x | | 2x–10=-14 | | -5(-10-3x)=110 | | 6x+4(x-2)=-6 | | 258=6k | | n-15=72 | | 14-2n=44 | | 2p+2=20+p | | 21x=+6−x−5 | | 55=5(c-76) | | 16=0.8x8 | | 60x+x=3x-70 | | -3.0046x=14.12162x | | 55t+7.5=22 | | 341 =21 +w | | 0.5x+3.49-2x=4 | | 4x–17=x+13 | | 55t-7.5=22 | | 4(9+x)=12 | | 825000-8684r=20 | | 4096=2^yY= |