5/4x-1=7/3x-2

Simple and best practice solution for 5/4x-1=7/3x-2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/4x-1=7/3x-2 equation:



5/4x-1=7/3x-2
We move all terms to the left:
5/4x-1-(7/3x-2)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
Domain of the equation: 3x-2)!=0
x∈R
We get rid of parentheses
5/4x-7/3x+2-1=0
We calculate fractions
15x/12x^2+(-28x)/12x^2+2-1=0
We add all the numbers together, and all the variables
15x/12x^2+(-28x)/12x^2+1=0
We multiply all the terms by the denominator
15x+(-28x)+1*12x^2=0
Wy multiply elements
12x^2+15x+(-28x)=0
We get rid of parentheses
12x^2+15x-28x=0
We add all the numbers together, and all the variables
12x^2-13x=0
a = 12; b = -13; c = 0;
Δ = b2-4ac
Δ = -132-4·12·0
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{169}=13$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-13}{2*12}=\frac{0}{24} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+13}{2*12}=\frac{26}{24} =1+1/12 $

See similar equations:

| 150/s=3 | | -8(-7p-6)=-9-p | | 14+6x=3(-x+2)-55 | | -3/13p=8/9 | | x+(2x-16)+(-3+2x)=180 | | 4(2x-3)=5x+2+3x-14 | | 36/x=9/2 | | 54=6*f | | 1q+1=2q | | 10^x=3.5 | | 5+4y=2-2y | | 14x+6=3(-x+2)-55 | | Z+24=2z | | 3j-4+2j+j=8 | | y-14=28 | | 3x-5+3=4-5 | | 72-x=18 | | 15x-7=5x-6 | | 5-2+2x=7x-2 | | c/9-8=7 | | -9x-12=123 | | b+4-6=10 | | 4x=5x+27 | | 7p+111=-31 | | (16x-39)+(2x=3)=180 | | 72-x=28 | | 84=14*c | | 19+3.5h=11+4.75h | | 12(x+9)=-+08 | | 20/35=28/x | | 4(4x+2)=-8 | | v/12-8=-8 |

Equations solver categories