5/4x+3-3x=7/4x-14

Simple and best practice solution for 5/4x+3-3x=7/4x-14 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/4x+3-3x=7/4x-14 equation:



5/4x+3-3x=7/4x-14
We move all terms to the left:
5/4x+3-3x-(7/4x-14)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
Domain of the equation: 4x-14)!=0
x∈R
We add all the numbers together, and all the variables
-3x+5/4x-(7/4x-14)+3=0
We get rid of parentheses
-3x+5/4x-7/4x+14+3=0
We multiply all the terms by the denominator
-3x*4x+14*4x+3*4x+5-7=0
We add all the numbers together, and all the variables
-3x*4x+14*4x+3*4x-2=0
Wy multiply elements
-12x^2+56x+12x-2=0
We add all the numbers together, and all the variables
-12x^2+68x-2=0
a = -12; b = 68; c = -2;
Δ = b2-4ac
Δ = 682-4·(-12)·(-2)
Δ = 4528
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4528}=\sqrt{16*283}=\sqrt{16}*\sqrt{283}=4\sqrt{283}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(68)-4\sqrt{283}}{2*-12}=\frac{-68-4\sqrt{283}}{-24} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(68)+4\sqrt{283}}{2*-12}=\frac{-68+4\sqrt{283}}{-24} $

See similar equations:

| 1.2(4x-10)=7.5 | | -4x+1=93 | | 0.16(y-8)+0.02y=0.20y-1.2 | | 8(x)+8(-6)+58=2(4x+5) | | 9x+3+5x+7=16x-2 | | 21+2x=28x | | 5−p=6 | | 8-9x=39 | | 3t-14=4 | | 6.3x^2-2.3x=15 | | -6(7x-3)=276 | | 425=-7-6(7c-9) | | 30x+40=220. | | 2x/7-x/6=11/5 | | x=32/12 | | -y^2=-16×^2 | | 10w^2+40=0 | | n+8.62= | | 1.8+0.6=0.9x-2.7 | | -2b+4b+(-5b)=18 | | 2/5x+1/9=5/9 | | 35=3a+20 | | 3x+-30=25 | | 3y-7y=-16+24 | | 3/4(a-8)=-10 | | x³=0.008 | | -35-(-29)=x/5 | | 7=2x+50 | | 2|x-3|+10=8 | | 92x-3x-3=5 | | -2x+-4=4 | | 14x-(-62)=120 |

Equations solver categories