5/3x-4=2/5x+3

Simple and best practice solution for 5/3x-4=2/5x+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/3x-4=2/5x+3 equation:



5/3x-4=2/5x+3
We move all terms to the left:
5/3x-4-(2/5x+3)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 5x+3)!=0
x∈R
We get rid of parentheses
5/3x-2/5x-3-4=0
We calculate fractions
25x/15x^2+(-6x)/15x^2-3-4=0
We add all the numbers together, and all the variables
25x/15x^2+(-6x)/15x^2-7=0
We multiply all the terms by the denominator
25x+(-6x)-7*15x^2=0
Wy multiply elements
-105x^2+25x+(-6x)=0
We get rid of parentheses
-105x^2+25x-6x=0
We add all the numbers together, and all the variables
-105x^2+19x=0
a = -105; b = 19; c = 0;
Δ = b2-4ac
Δ = 192-4·(-105)·0
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{361}=19$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-19}{2*-105}=\frac{-38}{-210} =19/105 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+19}{2*-105}=\frac{0}{-210} =0 $

See similar equations:

| 28+22x=30x | | 34=2(4x+5) | | 5k+8=44-k | | 8x-(12x+5x)= | | 10-14x-x^2=0 | | 3(7x+6)=2−(x+9) | | (6x+18x)-3x= | | 3(4x-11)+9=19 | | 3p+15=24 | | 2q-14=-9+q | | 56-6x=134 | | 5Y+40=-9y+4 | | 17x+(3x+8x)= | | 37+5x=-2x-33 | | 31.68=6g+3.54 | | 2(x+5)-x=4-2x | | x+7x9=4 | | 3/5(x+1)=-15 | | -58-6x=42+4x | | -5(6n-5)-(1-n)=24 | | 26.58=5g+3.63 | | x+7x=9;x=4 | | 7x-30=4x-6 | | -.25w–20=-30 | | 5x-7x+18=2(x+9) | | 0=10+20t-10t^2 | | Y+7x=9;x=-2 | | 40t-4.9t^2+18=0 | | -25y+27=-8 | | 2(-6k-5)=-15+7k | | 1/3x+4=x=2 | | (x-8)/(5)+(8)/(5)=-(x)/(3) |

Equations solver categories