5/3x+6=2/5x-9

Simple and best practice solution for 5/3x+6=2/5x-9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/3x+6=2/5x-9 equation:



5/3x+6=2/5x-9
We move all terms to the left:
5/3x+6-(2/5x-9)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 5x-9)!=0
x∈R
We get rid of parentheses
5/3x-2/5x+9+6=0
We calculate fractions
25x/15x^2+(-6x)/15x^2+9+6=0
We add all the numbers together, and all the variables
25x/15x^2+(-6x)/15x^2+15=0
We multiply all the terms by the denominator
25x+(-6x)+15*15x^2=0
Wy multiply elements
225x^2+25x+(-6x)=0
We get rid of parentheses
225x^2+25x-6x=0
We add all the numbers together, and all the variables
225x^2+19x=0
a = 225; b = 19; c = 0;
Δ = b2-4ac
Δ = 192-4·225·0
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{361}=19$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-19}{2*225}=\frac{-38}{450} =-19/225 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+19}{2*225}=\frac{0}{450} =0 $

See similar equations:

| -3x-7=2x-5 | | -5x+50=-15 | | 2x+5=x+610 | | –47=–t | | x/20=24/30 | | 60/4,200=x | | 3x^2+2=158 | | x/8=136 | | 24x-15=33x+9 | | 35x-45=15x+15 | | f-137=401 | | (6m)^2-4m=0 | | 3m=–51 | | 6k-10=-706k−10=−70 | | 31=22=w | | n-774=64 | | 3(2318)=6a | | 7=4=u | | p+135=482 | | 25x-8=42 | | f-382=22 | | 100+0.3x=210 | | 5x2+1=21 | | n-100=288 | | 8=-2h+3 | | 6x-8+106=180 | | 7a/27=-12 | | 50r=100 | | (3+x)-7=0 | | 27+1/4d=14 | | 2n+20+n=180 | | -21=7x+24 |

Equations solver categories