5/3k+6=7/2k-3

Simple and best practice solution for 5/3k+6=7/2k-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/3k+6=7/2k-3 equation:



5/3k+6=7/2k-3
We move all terms to the left:
5/3k+6-(7/2k-3)=0
Domain of the equation: 3k!=0
k!=0/3
k!=0
k∈R
Domain of the equation: 2k-3)!=0
k∈R
We get rid of parentheses
5/3k-7/2k+3+6=0
We calculate fractions
10k/6k^2+(-21k)/6k^2+3+6=0
We add all the numbers together, and all the variables
10k/6k^2+(-21k)/6k^2+9=0
We multiply all the terms by the denominator
10k+(-21k)+9*6k^2=0
Wy multiply elements
54k^2+10k+(-21k)=0
We get rid of parentheses
54k^2+10k-21k=0
We add all the numbers together, and all the variables
54k^2-11k=0
a = 54; b = -11; c = 0;
Δ = b2-4ac
Δ = -112-4·54·0
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{121}=11$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-11}{2*54}=\frac{0}{108} =0 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+11}{2*54}=\frac{22}{108} =11/54 $

See similar equations:

| 8x-2+46=11x+14 | | 2*x=15.625 | | x+2x+22+x=166 | | F(x)=2x^2-5x-20 | | 75+5x=12x+45 | | 365=5+0.09x | | 3*x=15.625 | | 6r+11r3r=80 | | 6(-2b-1)=-36+3b | | 25-5y=15 | | x+16=0.8 | | 40n=60 | | 11x+5-3x=21 | | 192=+12r | | -15−7p−13=-4p+17 | | 0.03(3t-6)=0.09(t+5)0.63 | | 121+25=c^2 | | -10j+7=-9j | | 3m-7=18 | | 90=(8x+100)+(2x+50) | | -12.2z-13.4z=-12.2z-13.4=-179.2 | | 8(k-1)=-18-2k | | 10y-(-360)=120 | | 8t+6=70 | | 2*x=43 | | 10y-270=120 | | 5(x+5)/3=3x-15 | | 185x=360 | | 5/6y=1/3y+2 | | 10y-(-90)=120 | | 3*x=129 | | 7k+1=16 |

Equations solver categories