5/2*x+7/2=3/4*x+14

Simple and best practice solution for 5/2*x+7/2=3/4*x+14 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/2*x+7/2=3/4*x+14 equation:



5/2x+7/2=3/4x+14
We move all terms to the left:
5/2x+7/2-(3/4x+14)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 4x+14)!=0
x∈R
We get rid of parentheses
5/2x-3/4x-14+7/2=0
We calculate fractions
20x/32x^2+(-24x)/32x^2+28x/32x^2-14=0
We multiply all the terms by the denominator
20x+(-24x)+28x-14*32x^2=0
We add all the numbers together, and all the variables
48x+(-24x)-14*32x^2=0
Wy multiply elements
-448x^2+48x+(-24x)=0
We get rid of parentheses
-448x^2+48x-24x=0
We add all the numbers together, and all the variables
-448x^2+24x=0
a = -448; b = 24; c = 0;
Δ = b2-4ac
Δ = 242-4·(-448)·0
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{576}=24$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-24}{2*-448}=\frac{-48}{-896} =3/56 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+24}{2*-448}=\frac{0}{-896} =0 $

See similar equations:

| f+114=–2 | | -2.7=c/8 | | 11x-2=22 | | -8x=-44 | | 2x+26=160 | | 4w-34=-5(w-4) | | 2x(x+7)=x(x+8)+2 | | 10+5n-60=0 | | 8(m+2)=16 | | 5(2+-1x)+-3(4+-2x)=20 | | -6v+4(v+3)=4 | | 6y-7=9+6y | | Y=-16x^2+163x+148 | | y=-5(1)-3 | | 3x+2+4x=88 | | 3x+2•4x=88 | | x+1-x=2x-5+x | | 4x+15+6x-5+21x-9=180 | | 4(y=4)=32 | | 11n+51=79 | | 6x+12=5(x+4) | | 25x+x+2x=27 | | Y4+4y2-117=0 | | y=-5(-1)-3 | | 6x+12=5(x+4 | | -8x-4+4x=16 | | 8y+4=7y+-2 | | -6(8-7x)=-9(6-4x) | | 0.25-0.6=x | | (2x-45)+(x+30)=90 | | 8x-3=11x+18 | | 8y+4=7y+2 |

Equations solver categories