5/2*b-5=1/2*b+1

Simple and best practice solution for 5/2*b-5=1/2*b+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/2*b-5=1/2*b+1 equation:



5/2*b-5=1/2*b+1
We move all terms to the left:
5/2*b-5-(1/2*b+1)=0
Domain of the equation: 2*b!=0
b!=0/1
b!=0
b∈R
Domain of the equation: 2*b+1)!=0
b∈R
We get rid of parentheses
5/2*b-1/2*b-1-5=0
We multiply all the terms by the denominator
-1*2*b-5*2*b+5-1=0
We add all the numbers together, and all the variables
-1*2*b-5*2*b+4=0
Wy multiply elements
-2b*b-10b*b+4=0
Wy multiply elements
-2b^2-10b^2+4=0
We add all the numbers together, and all the variables
-12b^2+4=0
a = -12; b = 0; c = +4;
Δ = b2-4ac
Δ = 02-4·(-12)·4
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*-12}=\frac{0-8\sqrt{3}}{-24} =-\frac{8\sqrt{3}}{-24} =-\frac{\sqrt{3}}{-3} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*-12}=\frac{0+8\sqrt{3}}{-24} =\frac{8\sqrt{3}}{-24} =\frac{\sqrt{3}}{-3} $

See similar equations:

| 0.3=(x)^5 | | 0.3=(x)^10 | | 11+1/3(6-12x)=33 | | 0.3=x^2 | | x2–6x+9=25 | | 8=q+5 | | 7y2+14y=0 | | 3x-5=196 | | 40+39x+2+60=180 | | 0.3=(x)^25 | | 4/7v=8 | | 5×n=15+5 | | 21=6u-3u | | 3(3x-14)+x=15-(-9x-5) | | 0.1t+0.9(20-t)=6 | | 16v-14v=10 | | -63=4y-8y-15y | | 8(p-0.25)=4(2p)-0.5 | | -5x^2-3x-7=0 | | 7/10x=-2/5 | | 7/1x=-2/5 | | -.7t^2+42t=0 | | m/8=21/56 | | 255=2500*3*r | | (3x-2)-3(x+1)=-7 | | 9x=3x-35 | | 18=9+t | | 50+x+89+50=180 | | 11b=55 | | 50+m=170 | | 0=9x^3-81x | | 2(x-10)=102 |

Equations solver categories