5/12d+1/6d+1/12d=6

Simple and best practice solution for 5/12d+1/6d+1/12d=6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/12d+1/6d+1/12d=6 equation:



5/12d+1/6d+1/12d=6
We move all terms to the left:
5/12d+1/6d+1/12d-(6)=0
Domain of the equation: 12d!=0
d!=0/12
d!=0
d∈R
Domain of the equation: 6d!=0
d!=0/6
d!=0
d∈R
We calculate fractions
(6d+5)/72d^2+12d/72d^2-6=0
We multiply all the terms by the denominator
(6d+5)+12d-6*72d^2=0
We add all the numbers together, and all the variables
12d+(6d+5)-6*72d^2=0
Wy multiply elements
-432d^2+12d+(6d+5)=0
We get rid of parentheses
-432d^2+12d+6d+5=0
We add all the numbers together, and all the variables
-432d^2+18d+5=0
a = -432; b = 18; c = +5;
Δ = b2-4ac
Δ = 182-4·(-432)·5
Δ = 8964
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8964}=\sqrt{36*249}=\sqrt{36}*\sqrt{249}=6\sqrt{249}$
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-6\sqrt{249}}{2*-432}=\frac{-18-6\sqrt{249}}{-864} $
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+6\sqrt{249}}{2*-432}=\frac{-18+6\sqrt{249}}{-864} $

See similar equations:

| 12=2-1/3z | | 8(b-4)=16 | | -5x^2-70x-605=0 | | 105+9.50e=14.75 | | 14(x+2)^2-51=0 | | 4a=8(*4) | | X2+15x-780=0 | | 120=177/133(7)+b | | Y-5+y=41 | | X2+15x-800=0 | | -22=-7+11r | | 180=x+25+x+65 | | 56y-2=42y=42 | | 8x=6.8 | | 3x-5(x-4)=-5+2x+17 | | x÷9=48 | | 2g–10=8 | | 3(x-4)=2(2x-8) | | 37x+9=180 | | +1=3(x−4) | | 16.8-v=6v,v | | 2h+h((6/h)-4)=6h-5.2 | | 22x+4=180-120 | | 35+2p=70 | | -5x=3x-5.7 | | 6x-12+3x+9=180 | | 6b^2-13b=-3 | | -1x-2=-3x+10 | | (2x+8)^2=64 | | 8/9x=2 | | -24+4y=8 | | 220=-16t^2+400 |

Equations solver categories