5/(3y)-2/3=(51y)/(2y)

Simple and best practice solution for 5/(3y)-2/3=(51y)/(2y) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/(3y)-2/3=(51y)/(2y) equation:



5/(3y)-2/3=(51y)/(2y)
We move all terms to the left:
5/(3y)-2/3-((51y)/(2y))=0
Domain of the equation: 3y!=0
y!=0/3
y!=0
y∈R
Domain of the equation: 2y)!=0
y!=0/1
y!=0
y∈R
We add all the numbers together, and all the variables
5/3y-(+51y/2y)-2/3=0
We get rid of parentheses
5/3y-51y/2y-2/3=0
We calculate fractions
(-1377y^2)/54y^2+10y/54y^2+(-4y)/54y^2=0
We multiply all the terms by the denominator
(-1377y^2)+10y+(-4y)=0
We get rid of parentheses
-1377y^2+10y-4y=0
We add all the numbers together, and all the variables
-1377y^2+6y=0
a = -1377; b = 6; c = 0;
Δ = b2-4ac
Δ = 62-4·(-1377)·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{36}=6$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6}{2*-1377}=\frac{-12}{-2754} =2/459 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6}{2*-1377}=\frac{0}{-2754} =0 $

See similar equations:

| 2x+9=13x+12 | | 58-9=x | | 25x-15=61x-91 | | 19x+12=15x+48 | | 7x+6=120° | | 23x-48=79x-12 | | 550+8.25x=17x | | 8(3)x=72 | | 3x-21=-12x+24 | | .07w=$0.45 | | 15x+25=19x-34 | | 18x-550+7.25x=0 | | 18x-550+7.25=0 | | 32+15=49x-99 | | 32x15=49x-99 | | X-10=3x-17 | | 12x+12=18x-23 | | 18x-650+7.25x=0 | | 0.4x+0.5=0.8x+0.3 | | 29x+32=17x-23 | | 9^(x-7)=81 | | -5x+4=22 | | 3x–11=16 | | 3m–11=16 | | 54=12x+6 | | 10p^2-75p+65=0 | | 9.8x^2+29.4x+60=0 | | 9.8x+29.4x+60=0 | | 2x+11=5x-52 | | x=-61/2 | | 2250=5000*r*5 | | 5+r=9(–2r−10) |

Equations solver categories