5.2x-7=3/4x+14

Simple and best practice solution for 5.2x-7=3/4x+14 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5.2x-7=3/4x+14 equation:



5.2x-7=3/4x+14
We move all terms to the left:
5.2x-7-(3/4x+14)=0
Domain of the equation: 4x+14)!=0
x∈R
We get rid of parentheses
5.2x-3/4x-14-7=0
We multiply all the terms by the denominator
(5.2x)*4x-14*4x-7*4x-3=0
We add all the numbers together, and all the variables
(+5.2x)*4x-14*4x-7*4x-3=0
We multiply parentheses
20x^2-14*4x-7*4x-3=0
Wy multiply elements
20x^2-56x-28x-3=0
We add all the numbers together, and all the variables
20x^2-84x-3=0
a = 20; b = -84; c = -3;
Δ = b2-4ac
Δ = -842-4·20·(-3)
Δ = 7296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7296}=\sqrt{64*114}=\sqrt{64}*\sqrt{114}=8\sqrt{114}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-84)-8\sqrt{114}}{2*20}=\frac{84-8\sqrt{114}}{40} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-84)+8\sqrt{114}}{2*20}=\frac{84+8\sqrt{114}}{40} $

See similar equations:

| (3x-1)+58=180 | | -5x+6=40 | | m(8)=56 | | 18x=10x+24 | | u/6=36 | | (2x)^2/3=100 | | e/5=105 | | (2x+6)-5x=0 | | (x-1.1)=19.6 | | 25-0.14x=18.28 | | -6(3a+4)=10+9(3-2a) | | -2.14(-x-2)=10.7 | | 8x-16+2x+20+x=180 | | 10x+3+11+8x+19=180 | | 4x-1+6x+11+60=180 | | 7x+84=6x+84 | | j+15/4=6 | | -0.15=2.85+-2n | | 2X+23=3x-45 | | n2-3=61 | | 10+20x=60-40x | | 1356.48=3.14*r^2*12 | | 95+98x=2895 | | 2x+10=-4x+12 | | -5+6a+(-8)+(-3a)=3a+ | | 2x/3+5/9=-4/9 | | x+0.5x=72 | | -55=x-18.x | | 7x+13=57 | | 4^(8n-2)=84 | | Y=-5x-4x | | 26+2p=6p |

Equations solver categories