5-2/7n=1/2n+13

Simple and best practice solution for 5-2/7n=1/2n+13 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5-2/7n=1/2n+13 equation:



5-2/7n=1/2n+13
We move all terms to the left:
5-2/7n-(1/2n+13)=0
Domain of the equation: 7n!=0
n!=0/7
n!=0
n∈R
Domain of the equation: 2n+13)!=0
n∈R
We get rid of parentheses
-2/7n-1/2n-13+5=0
We calculate fractions
(-4n)/14n^2+(-7n)/14n^2-13+5=0
We add all the numbers together, and all the variables
(-4n)/14n^2+(-7n)/14n^2-8=0
We multiply all the terms by the denominator
(-4n)+(-7n)-8*14n^2=0
Wy multiply elements
-112n^2+(-4n)+(-7n)=0
We get rid of parentheses
-112n^2-4n-7n=0
We add all the numbers together, and all the variables
-112n^2-11n=0
a = -112; b = -11; c = 0;
Δ = b2-4ac
Δ = -112-4·(-112)·0
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{121}=11$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-11}{2*-112}=\frac{0}{-224} =0 $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+11}{2*-112}=\frac{22}{-224} =-11/112 $

See similar equations:

| 5-2/7n=1/2n | | 5^n=5^11⋅5^3. | | 5n=5^11⋅5^3. | | x(x+2)=10200 | | 6(v-100)=-82 | | x/4375=52 | | 3/5a+3/5*5.25=7.35 | | 7-x=4-2x/5 | | 9(h-92)=72 | | x/4375=32 | | 4x+22=2x-32 | | 5q+30=-5 | | 65,000=10,000(1.08)7x | | 48=4(q-70) | | Y^3-100y-100000=0 | | -9s-s-(-13s=)-9 | | 6(d+6)=96 | | Y3-100y-100000=0 | | 2q²+3q–4=0 | | (20k+4=)° | | 5x-2=3x+6* | | 9x+280=7x+490 | | 7n+28=91 | | 3x=8.50 | | 3/4w=21-30 | | -12x-6=18 | | v+14/10=5 | | 10p+6=4p | | 3x+20=10x+14 | | (4x+15)°=(13x+7)° | | d+3/8=4 | | 2{3e-5}=8 |

Equations solver categories