5-0.5x=5/8x+2

Simple and best practice solution for 5-0.5x=5/8x+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5-0.5x=5/8x+2 equation:



5-0.5x=5/8x+2
We move all terms to the left:
5-0.5x-(5/8x+2)=0
Domain of the equation: 8x+2)!=0
x∈R
We get rid of parentheses
-0.5x-5/8x-2+5=0
We multiply all the terms by the denominator
-(0.5x)*8x-2*8x+5*8x-5=0
We add all the numbers together, and all the variables
-(+0.5x)*8x-2*8x+5*8x-5=0
We multiply parentheses
-0x^2-2*8x+5*8x-5=0
Wy multiply elements
-0x^2-16x+40x-5=0
We add all the numbers together, and all the variables
-1x^2+24x-5=0
a = -1; b = 24; c = -5;
Δ = b2-4ac
Δ = 242-4·(-1)·(-5)
Δ = 556
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{556}=\sqrt{4*139}=\sqrt{4}*\sqrt{139}=2\sqrt{139}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-2\sqrt{139}}{2*-1}=\frac{-24-2\sqrt{139}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+2\sqrt{139}}{2*-1}=\frac{-24+2\sqrt{139}}{-2} $

See similar equations:

| 6w2–4w–6=0 | | v2+6v+9=0 | | 3500-y+.9y=0 | | 17h+15=20h | | (2/3)=(3/4)-(1/2)x | | -9w-43=-2(w+4) | | 6y2+7y+4=0 | | 2p2+6p+5=0 | | 10(e+5)-11=11(e-4) | | 2(3-1)=1.2-x | | 21+2.2w=15.4+3.6 | | 3x0=-24 | | (5x+16)102+100+92=360 | | 21+2.2w=15.4+6w | | .8p-8=20 | | 2y+×=13 | | Y=1/4(3^x) | | 21x-52=137 | | 5/8+1/6=x/2-1/3 | | 3^x=2^(2x)(144) | | t^2+8t=48 | | 7a+3=3a+5 | | 3x;-11=16 | | 3x=2^(2x)(144) | | 3m-69=0 | | 2p+8=20p | | 7y+34=-2(y-8) | | x-3/3-x-5/5=2 | | 2r+10+3r=-12-r-20 | | 10x-(-3x+6)=20 | | 11x-9=46 | | 3.2y-2.2=4.9y+4.6 |

Equations solver categories