5+31/2k=21/4k+6

Simple and best practice solution for 5+31/2k=21/4k+6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5+31/2k=21/4k+6 equation:



5+31/2k=21/4k+6
We move all terms to the left:
5+31/2k-(21/4k+6)=0
Domain of the equation: 2k!=0
k!=0/2
k!=0
k∈R
Domain of the equation: 4k+6)!=0
k∈R
We get rid of parentheses
31/2k-21/4k-6+5=0
We calculate fractions
124k/8k^2+(-42k)/8k^2-6+5=0
We add all the numbers together, and all the variables
124k/8k^2+(-42k)/8k^2-1=0
We multiply all the terms by the denominator
124k+(-42k)-1*8k^2=0
Wy multiply elements
-8k^2+124k+(-42k)=0
We get rid of parentheses
-8k^2+124k-42k=0
We add all the numbers together, and all the variables
-8k^2+82k=0
a = -8; b = 82; c = 0;
Δ = b2-4ac
Δ = 822-4·(-8)·0
Δ = 6724
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{6724}=82$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(82)-82}{2*-8}=\frac{-164}{-16} =10+1/4 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(82)+82}{2*-8}=\frac{0}{-16} =0 $

See similar equations:

| 5+31/2k=21/4+6 | | 5x-9+2x+12+6x-2=180 | | 3-2(x+2)=4x-(3x+2) | | -3/8x(x-24)+x=19 | | 3-2(x-2)=4x-(3x+2) | | 5/6v=-5 | | x+26+97+x=180​ | | |4p-5|=-31 | | 10j=-7 | | 2x(x)=34 | | -.5(6x-12)=15-3x | | 2(3x(3)=6x(6) | | 6/7x-2/6=112/3 | | 5(0)-8y=-40 | | 3m+6+m=7m-4-2 | | (1+x)^84=0 | | 3.5x-2.5=43 | | (1+x)^84^=0 | | 4x+8(2-x)=15 | | x(x-15)=82 | | 4x+1)/3-(2-3x)/4=(26-x)/6 | | 4(2-y)+8y=15 | | 1/2(12x-16)=1/4(4x-8) | | -2x+2x-10=-10 | | 8{1-2b}=12(2b+14} | | -9r=-8r+2 | | 38-16b=24b+168 | | 3x=6x+8/2-4 | | 39x-98=57x+15-12 | | P=15+8d13 | | (2x-2)=(3x-15) | | 125=43x |

Equations solver categories