If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5+19x^2=48
We move all terms to the left:
5+19x^2-(48)=0
We add all the numbers together, and all the variables
19x^2-43=0
a = 19; b = 0; c = -43;
Δ = b2-4ac
Δ = 02-4·19·(-43)
Δ = 3268
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3268}=\sqrt{4*817}=\sqrt{4}*\sqrt{817}=2\sqrt{817}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{817}}{2*19}=\frac{0-2\sqrt{817}}{38} =-\frac{2\sqrt{817}}{38} =-\frac{\sqrt{817}}{19} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{817}}{2*19}=\frac{0+2\sqrt{817}}{38} =\frac{2\sqrt{817}}{38} =\frac{\sqrt{817}}{19} $
| 5+19x2= | | 10+5x4= | | 112(x−10)=1+x | | 23x+2+140=180 | | 3x+7=5×-15 | | 5(5x-6)-4x+8=62 | | 3x+7=5×-15=51-× | | 168/84=x/20 | | 3(√2/3)²+m√2/3+2=0 | | 132/20=33/x | | 39/x=117/12 | | (13y^2)+10y−3=(5y^2) | | (13y^2)+10y−3=5y^2 | | ‐x=x‐180 | | 21+5x=2(x+21) | | v-4.5=6.34 | | -7(6x+5)=-42x+35 | | 8-2(2p+3)=6-(p+3) | | 8-4p-6=6-p+3 | | −2(−4x−1)−x+3=-30 | | 7x+7=2x+16 | | -0.8x+2.85=-0.4x+7.65 | | 4+x+2+3x=30 | | k2=6 | | 2y+7=23-7= | | 2y+7=3-7= | | 4(4x-2.3)=4x-9.2 | | -0.6x+6.46=0.8x+0.66 | | 20=2.5k | | 1.7x-13=1.2x+8 | | x^2+24=16 | | 3x+5.10x+7=180 |