5*(x-3)=2*(x+1)-5x*(x-3)

Simple and best practice solution for 5*(x-3)=2*(x+1)-5x*(x-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5*(x-3)=2*(x+1)-5x*(x-3) equation:



5*(x-3)=2*(x+1)-5x*(x-3)
We move all terms to the left:
5*(x-3)-(2*(x+1)-5x*(x-3))=0
We multiply parentheses
5x-(2*(x+1)-5x*(x-3))-15=0
We calculate terms in parentheses: -(2*(x+1)-5x*(x-3)), so:
2*(x+1)-5x*(x-3)
We multiply parentheses
-5x^2+2x+15x+2
We add all the numbers together, and all the variables
-5x^2+17x+2
Back to the equation:
-(-5x^2+17x+2)
We get rid of parentheses
5x^2-17x+5x-2-15=0
We add all the numbers together, and all the variables
5x^2-12x-17=0
a = 5; b = -12; c = -17;
Δ = b2-4ac
Δ = -122-4·5·(-17)
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{484}=22$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-22}{2*5}=\frac{-10}{10} =-1 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+22}{2*5}=\frac{34}{10} =3+2/5 $

See similar equations:

| 2(x−4)=10 | | 25(z+3)=10025(z+3)=100 | | m÷-4=5 | | x/7+1/1=8 | | 2j-10=8j-1 | | 10(2x+12)=65 | | 4(3x+3)-3(2x-2)=0 | | x=x*3+2 | | 5.6j-0.12=1.1j | | 5.6j-0.2=4+1.1j | | 3y+6=5y-14 | | -37-7x=33 | | -17+2x=5 | | -37+3x=-103 | | 68=-9x-112 | | 12x-80=-188 | | 10x-67=-197 | | 50x3=15010x6=60150+60=210 | | 7a=9-2a | | x+8x=204 | | 4(3-x)+5=1 | | -14^2-4x=0 | | -3^2=x | | 72-14x=198 | | 5800=(x-(-4)29000 | | 2(x–3)+2(3x+4)=10 | | X-7+x-2=81 | | 1/9*x+4=81 | | 5b-14=3b+46 | | 3xX=56 | | 4x-1=x-8 | | 10x-67=197 |

Equations solver categories