5(y-3)=2y-(y+4)5y-3

Simple and best practice solution for 5(y-3)=2y-(y+4)5y-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5(y-3)=2y-(y+4)5y-3 equation:



5(y-3)=2y-(y+4)5y-3
We move all terms to the left:
5(y-3)-(2y-(y+4)5y-3)=0
We multiply parentheses
5y-(2y-(y+4)5y-3)-15=0
We calculate terms in parentheses: -(2y-(y+4)5y-3), so:
2y-(y+4)5y-3
We multiply parentheses
-5y^2+2y-20y-3
We add all the numbers together, and all the variables
-5y^2-18y-3
Back to the equation:
-(-5y^2-18y-3)
We get rid of parentheses
5y^2+18y+5y+3-15=0
We add all the numbers together, and all the variables
5y^2+23y-12=0
a = 5; b = 23; c = -12;
Δ = b2-4ac
Δ = 232-4·5·(-12)
Δ = 769
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-\sqrt{769}}{2*5}=\frac{-23-\sqrt{769}}{10} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+\sqrt{769}}{2*5}=\frac{-23+\sqrt{769}}{10} $

See similar equations:

| -4+3x=8x | | 0.18+y=0.4(7y-0.9) | | 1=5(r+9)-2(1+r) | | 147000=4.9x-38000 | | x-72=4 | | p4=72 | | x+93=95 | | -1/2c=10 | | x/3.9=15 | | 3(-6x-2)=-1 | | 3(-6x-2=-1 | | -v/3=-50 | | A=3400r+600=21000 | | A=3400r+600=21.000 | | 104-x=189 | | 3(5x+1)=153 | | 3x+1.850+2=4x-1x+1.852 | | 130+0.20x-0.20x=50+0.30x-0.20x | | 130-0.20x-0.20x=50+0.30x-0.20x | | 5x-50+65=180 | | 200x=1550 | | 6(31)-103+y=180 | | 5(x+35)=175 | | 3x+21.5=119 | | 6(31)-103+z=180 | | t-15=90 | | r/13+22=13 | | 8(x+6)=110 | | -41x^2=-44032 | | (9/4)v+4/5=7/8 | | 3(x+4)=2x+4x-6x | | 6(e+1)=48 |

Equations solver categories