If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5(y-1)=3(2y-5)(1-3y)
We move all terms to the left:
5(y-1)-(3(2y-5)(1-3y))=0
We add all the numbers together, and all the variables
5(y-1)-(3(2y-5)(-3y+1))=0
We multiply parentheses
5y-(3(2y-5)(-3y+1))-5=0
We multiply parentheses ..
-(3(-6y^2+2y+15y-5))+5y-5=0
We calculate terms in parentheses: -(3(-6y^2+2y+15y-5)), so:We get rid of parentheses
3(-6y^2+2y+15y-5)
We multiply parentheses
-18y^2+6y+45y-15
We add all the numbers together, and all the variables
-18y^2+51y-15
Back to the equation:
-(-18y^2+51y-15)
18y^2-51y+5y+15-5=0
We add all the numbers together, and all the variables
18y^2-46y+10=0
a = 18; b = -46; c = +10;
Δ = b2-4ac
Δ = -462-4·18·10
Δ = 1396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1396}=\sqrt{4*349}=\sqrt{4}*\sqrt{349}=2\sqrt{349}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-46)-2\sqrt{349}}{2*18}=\frac{46-2\sqrt{349}}{36} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-46)+2\sqrt{349}}{2*18}=\frac{46+2\sqrt{349}}{36} $
| 14x-36=9x-1 | | y=-9y+10 | | 10+7(c)=32 | | 36=16-4x | | 7(y-3)=-2y-3 | | 187=2x+5(-3+14) | | 20-3x=4x+41 | | 17d−16d−d+2d=14 | | -6(y+4)=-4y-20 | | 17d−16d−+2d=14 | | 3j+2=7+8j | | 10=f4+ 8 | | -2x+8=-6x | | 13x-31=540 | | (4^x)+(6^x)=(9^x) | | -0.48x+0.28x=2.8 | | 89+(12x+55)=180 | | 4x+2-5x=11 | | 10z-5z-4z-z+3z=18 | | 2v=-9+3v | | -6w+12=-3(w-5) | | 7a+5(a+3=8a+4(a+2) | | 450-15x=180 | | -9u-3=-3(4+7) | | 71+(11x+87)=180 | | x+2+8=4x-2 | | 23-4x=9x-3 | | 8a-2a+2a-2a=12 | | 3/4y+2=1/4y+15 | | -7w=-8w−10 | | -159=6x-3(-3-7) | | -7/4x+1/2=3/2x |