5(y+12)-17(2-y)/7y-1=8

Simple and best practice solution for 5(y+12)-17(2-y)/7y-1=8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5(y+12)-17(2-y)/7y-1=8 equation:



5(y+12)-17(2-y)/7y-1=8
We move all terms to the left:
5(y+12)-17(2-y)/7y-1-(8)=0
Domain of the equation: 7y!=0
y!=0/7
y!=0
y∈R
We add all the numbers together, and all the variables
5(y+12)-17(-1y+2)/7y-1-8=0
We add all the numbers together, and all the variables
5(y+12)-17(-1y+2)/7y-9=0
We multiply parentheses
5y-17(-1y+2)/7y+60-9=0
We multiply all the terms by the denominator
5y*7y-17(-1y+2)+60*7y-9*7y=0
We multiply parentheses
5y*7y+17y+60*7y-9*7y-34=0
Wy multiply elements
35y^2+17y+420y-63y-34=0
We add all the numbers together, and all the variables
35y^2+374y-34=0
a = 35; b = 374; c = -34;
Δ = b2-4ac
Δ = 3742-4·35·(-34)
Δ = 144636
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{144636}=\sqrt{4*36159}=\sqrt{4}*\sqrt{36159}=2\sqrt{36159}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(374)-2\sqrt{36159}}{2*35}=\frac{-374-2\sqrt{36159}}{70} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(374)+2\sqrt{36159}}{2*35}=\frac{-374+2\sqrt{36159}}{70} $

See similar equations:

| b18+6=11 | | 3x2+6x−62=7 | | -1m=8+m | | d12+6=9 | | c+74=4 | | |m-4|=5 | | 6q+12=18 | | s=2s-32 | | b19+16=16 | | 2v+8=14 | | −16=0.2b | | 5b+15=10b | | 17(1.21^x)=10 | | 13q+1=1 | | –6+4c=6c | | -28=-7(m+6)-2(-8-4M) | | h/3=-4.3 | | 4x-3=6+1 | | (4x-5)/8=11 | | p/5=24 | | z=3z-24 | | 8p-99=2p+45 | | 8x-8=-14 | | 1/3x+5=09 | | 12-4(x+1)=23 | | 7(m-11=) | | t+83=7t-91 | | 6s-9=3s+9 | | (9-2x)=13-11x | | 6n+7n=4-7 | | 6s–9=3s+9 | | -12m+-6=30m+-6 |

Equations solver categories