5(x-2)=5x(-2)-5x2

Simple and best practice solution for 5(x-2)=5x(-2)-5x2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5(x-2)=5x(-2)-5x2 equation:



5(x-2)=5x(-2)-5x^2
We move all terms to the left:
5(x-2)-(5x(-2)-5x^2)=0
We multiply parentheses
-(5x(-2)-5x^2)+5x-10=0
We calculate terms in parentheses: -(5x(-2)-5x^2), so:
5x(-2)-5x^2
determiningTheFunctionDomain -5x^2+5x(-2)
We multiply parentheses
-5x^2-10x
Back to the equation:
-(-5x^2-10x)
We get rid of parentheses
5x^2+10x+5x-10=0
We add all the numbers together, and all the variables
5x^2+15x-10=0
a = 5; b = 15; c = -10;
Δ = b2-4ac
Δ = 152-4·5·(-10)
Δ = 425
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{425}=\sqrt{25*17}=\sqrt{25}*\sqrt{17}=5\sqrt{17}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-5\sqrt{17}}{2*5}=\frac{-15-5\sqrt{17}}{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+5\sqrt{17}}{2*5}=\frac{-15+5\sqrt{17}}{10} $

See similar equations:

| 20x/20=200/20 | | 2x/5=8/10 | | 1-3/6a=-2 | | Yx180=330 | | Xx180=330 | | 33=x-20.5 | | 0.15x-0.12=0.6 | | (x+5)^3/2=0 | | -5a-2=5/3a | | 5/3=3y-2y-105/3=1y-105/3=95=-9/35=-3-3/5 | | 8x+4=3x+16 | | 5x-24°=58° | | 180-90-x=x | | P9+4q=65 | | 5x+7+4x-2=180 | | s+-134=307 | | 3d=102 | | y/14=15 | | 5y/6=2y/3 | | 7w-42=-7(w+2) | | 954=m+24 | | 282=c+98 | | 43=k-22 | | u+29=99 | | -31=w+8 | | -6s=-54 | | 2=v/2 | | 226=1-y | | 4=j-1 | | n/7+87=94 | | y/3+20=27 | | 6A=(9m)°,6B=(7m)° |

Equations solver categories